July 30, 2021  |  Corporate news

Announcing the Winners of Our Clinical Research SMRT Grant – Two Scientists at the Forefront of Discovery

Here at PacBio, we have had the privilege of awarding many SMRT Grants to intrepid scientists who believe that HiFi sequencing data can help them achieve their goals. Recently, we invited people to apply for our Clinical Research SMRT Grant for projects with a link to potential clinical utility. We believe these projects could benefit tremendously from the value of HiFi reads, which offer both high accuracy and long reads to reveal genomic insights often missed by short-read sequencing.
Narrowing these applications down to just one winner is always challenging, but this time we found it to be impossible. So, for the first time ever, we planned to give one award and wound up making two awards instead. We are thrilled to announce the winners— one scientist at the start of her career and one well established in hers. We couldn’t be prouder to support the work of these two outstanding women and the questions they seek to answer.
Please join us in congratulating Danielle Brandes and Jenny Taylor on becoming our latest SMRT Grant winners! Here’s a look at what they plan to do with their awards.

Danielle Brandes, PhD Student

Institution: Pediatric Oncology, Medical Faculty, Heinrich Heine University Düsseldorf
Project Goal: Discover structural variants related to pediatric acute lymphoblastic leukemia that have been missed by other technologies.
Danielle’s proposal piqued our interest for many reasons. Acute lymphoblastic leukemia (ALL) is the most common childhood cancer to-date. Scientists understand that cancer predisposition genes (CPGs) are part of the puzzle when it comes to genetic predisposition in leukemic patients. However, CPGs are just a piece of the story. A large portion of the genome is affected by structural variants. Unfortunately, when it comes to leukemia, little is known about how structural variations play a part.

Despite technical and analytical progress in the field of NGS, the landscape of structural variations remains largely unresolved. In this context, we are excited to see how PacBio HiFi long-read sequencing will complement our whole-genome optical mapping data set to elucidate potentially pathogenic SVs in our studies of acute lymphoblastic leukemia. This approach will give new insights on mechanisms of leukemic predisposition as well as to the spectrum of somatic structural variation in leukemia.
— Danielle Brandes

Danielle Brandes works in the lab as a PhD Student at Heinrich Heine University Düsseldorf.

Danielle’s team has performed whole-genome optical mapping (WGOM) to identify SVs in pediatric patient studies diseased with a high hyperdiploid or ETV6-RUNX1 translocated ALL. But, there is more to be done. Through HiFi sequencing, Danielle hopes to detect additional SVs that might have been missed by, or could complement, the WGOM data she has been gathering.
With the help of the SMRT Grant, we are excited to see how Danielle will be able to use HiFi sequencing to generate an individual comprehensive germline/leukemia genome in the pursuit of pathogenic SVs in CPGs and somatically acquired events in ALL studies.


Jenny Taylor, Associate Professor

Institution: University of Oxford
Project Goal: Use HiFi sequencing to resolve structural variants and phase variants for a few participants in the UK’s 100,000 Genomes Project as a demonstration of how this approach could potentially help address unsolved disease cases.
Our second winner, Jenny Taylor, is a seasoned scientist with years of experience in her field. Now, she is hoping to use PacBio’s technology to add value to specific samples collected as part of the 100,000 Genomes Project to further understand rare diseases.

Jenny Taylor (far right) with her team from the Biomedical Research Centre, University of Oxford.

“I am delighted to be awarded this grant from PacBio that may help our lab support Genomics England to increase understanding of undiagnosed diseases for some of those who have been referred to the 100,000 Genomes Project.”
— Jenny Taylor

The UK’s 100,000 Genomes Project completed whole genome sequencing for 73,880 genomes from rare disease patients. Jenny is hopeful that further research can be done to investigate the pathogenesis of some of the unsolved rare disease research cases to which they have access. With HiFi sequencing, she hopes to undertake comprehensive variant detection in 3 genomes to provide proof-of-principle for the PacBio platform.

Congratulations to these two outstanding scientists! We couldn’t be more excited to see what comes of these projects and are honored to sponsor each of these scientists in their pursuit of discovery.
And thank you to our co-sponsor, Icahn Institute for Data Science and Genomic Technology, for teaming up with PacBio to make this SMRT Grant possible. Explore upcoming SMRT Grant Programs to apply to have your project funded.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.