X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

New Isoform Phasing Technique Traces Parental-Progeny Differences in Maize

Friday, July 17, 2020

It’s not unusual for progeny to outperform their parents, and it’s often the goal in plant breeding. But tracing the molecular basis of such heterosis can be difficult, especially in diploid species with high genetic diversity and allele-specific expression like maize.

Cold Spring Harbor scientists have tackled the challenge using the PacBio Iso-Seq method and a new tool, IsoPhase.

As reported in Nature Communications Biology, Bo Wang, Doreen Ware, and colleagues performed an isoform-level phasing study in maize using the temperate line B73 and the tropical line Ki11, as well as their reciprocal crosses (B73 × Ki11; Ki11 × B73), which exhibit dramatic differences in height, root number and biomass from their parents.

The Cold Spring Harbor team phased 6,907 genes in the two reciprocal hybrids and were able to identify parental origin as well as novel isoforms in the hybrid lines. They also measured differing haplotypic expressions.

“Full-length, single-molecule sequencing provides an unprecedented allele-specific view of the haploid transcriptome,” the authors wrote.  

“Haplotype phasing using long reads allowed us to accurately calculate allele-specific transcript and gene expression, as well as identify imprinted genes and investigate the cis/trans-regulatory effects.” 

Because alleles from the same gene can generate heterozygous transcripts with distinct sequences, full analysis of allele-specific expression (ASE) is necessary to achieve a thorough understanding of transcriptome profiles. Previous attempts using short-read RNA-seq have provided expression information, but have not been able to provide full-length haplotype information.

For each gene, full-length reads from all 12 samples are aligned to a gene region.

The Cold Spring Harbor team used the Sequel platform to produce a single-molecule full-length cDNA dataset for the two maize parental lines and their reciprocal hybrid lines from root, embryo, and endosperm. 

Barcoded SMRTbell libraries produced 4,898,979 HiFi reads, yielding 250,168 full-length, high-quality consensus transcript sequences. After mapping to the maize RefGen_v4 genome assembly and assessing for redundancy, the team ended up with 3,344 novel transcripts.

For phasing of these transcripts, the team applied the new IsoPhase tool, which uses the full-length nature of the reads and SNP calling to phase reads. 

To determine which allele belonged to B73 or Ki11, they took advantage of the fact that all B73 reads must only express one allele, whereas all Ki11 reads must only express the other. Once the parental alleles were identified, they obtained the allelic counts for the F1 hybrids.  

“Sequencing of full-length haplotype-specific isoforms enabled accurate assessment of allelic imbalance, which could be used to study the molecular mechanisms underlying genetic or epigenetic causative variants and associate expression polymorphisms with plant heterosis.

The approach does not require parental information (although parental data could be used to assign maternal and paternal alleles) and can be used on exclusively long-read data, they added.

“To our knowledge, this is the first full-length isoform phasing study in maize, or in any plant, and thus provides important information for haplotype phasing to other organisms, including polyploid species,” the authors wrote. 

 

Learn more about PacBio transcriptome sequencing and the Iso-Seq analysis method.

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Executive Officer

Friday, August 7, 2020