X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Carnivorous Plant Relies on Tandem Duplications for Adaptation

Tuesday, January 9, 2018

Photo by Kevin Thiele

Scientists from the University at Buffalo, Nanyang Technological University, and other institutions published results from an effort to elucidate the Utricularia gibba genome using SMRT Sequencing.

U. gibba, also known as the humped bladderwort, is an aquatic carnivorous flowering plant with a remarkably small genome, especially in light of two whole genome duplication events. Genome sequencing and annotation data are reported in the PNAS publication “Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome” from lead author Tianying Lan, senior author Victor Albert, and collaborators. The scientists were interested in using the plant’s genome to learn more about the post-duplication deletion process as well as traits specific to carnivorous plants.

This particular plant’s genome was previously sequenced with short-read technology, producing an 82 Mb assembly “which revealed that its genome gained and deleted gene duplicates significantly faster than those of other genomes,” the scientists note. By applying PacBio long-read technology, the team was able to significantly improve on the original assembly. The de novo genome project resulted in an assembly with a contig N50 of nearly 3.5 Mb. The total size was about 100 Mb, adding more than 18 Mb missed by the short-read assembly. Twenty-four contigs included telomeres, with four of those representing complete chromosomes. “Remarkably, base pair correction using either the PacBio data or Illumina MiSeq reads from our previous assembly led to extremely minor improvements, only 0.071% and 0.01% of total bases, respectively,” Lan et al. write.

The authors present a more complete count of protein-coding genes thanks to the improved assembly. The tally came to 30,689, a nearly 8% increase from estimates based on the short-read assembly. In addition, “unlike the far shorter scaffolds from [the prior] assembly, our largely chromosome-sized contigs permitted us to conservatively distinguish the [whole genome duplication]-derived and tandem duplicate portions of U. gibba’s genome adaptive landscape,” they write. That unique information enabled the team to discover that tandem duplication events were “enriched in metabolic functions potentially important for a carnivorous plant” — including cysteine protease genes expressed only in the plant’s trap — while syntenic duplicates were “enriched for transcription factor functions,” the scientists report. “Such small-scale, tandem duplicates are therefore revealed as essential elements in the bladderwort’s carnivorous adaptation.”

Transposable elements were another area of investigation, with many more TE-derived events found in the PacBio assembly compared to the previous one. “Serving as a good illustration of the repeat discovery power of PacBio sequencing, ∼47% of the total TE assembly space comprised [large retrotransposon derivatives], whereas these elements amounted to only ∼14.6% of TEs in the previous short-read assembly,” the authors write.

For more information, check out this New York Times article covering the project and hear Tanya Renner, paper co-author, speak about carnivorous plants at the PacBio workshop held at the upcoming Plant & Animal Genome Conference on Monday, January 15th at 12:50 PM. Reserve your seat or register for a recording of the presentation.

Subscribe for blog updates:

Archives