X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

ASHG Workshop Recap & Recording: Addressing Hidden Heritability with SMRT Sequencing

Friday, October 9, 2015

The PacBio workshop at ASHG 2015 featured talks from two leaders in human genomics, Rick Wilson of Washington University and Richard Gibbs from Baylor University. Mike Hunkapiller, CEO of Pacific Biosciences, opened the workshop with a historical perspective of human genome sequencing, starting with the Human Genome Project.  While advances have been made in technology, throughput and cost reductions, the quality of genomes hasn’t kept pace with decreases in cost, he noted. This is why Hunkapiller was particularly proud to share the news of the company’s launch of the Sequel System – which offers SMRT Sequencing and long reads at seven times greater throughput over the PacBio RS II and roughly half the cost, making it feasible to use the system for de novo assembly of high-quality human genomes.  He also stated that the platform has the capacity to scale over time to handle increasingly higher-density SMRT Cells, pointing toward a future where de novo human genomes will become both practical and routine.

Rick Wilson titled his talk “Of reference genomes and precious metals” and walked the audience through definitions and standards for the various quality levels for de novo assembled human genomes, e.g., platinum, gold, and silver. He noted that this was a good topic for this session because of the important role PacBio has played in the community’s work to create reference-grade genomes. For example, PacBio technology has enabled them to sequence additional genomes (CHM1, CHM13) to a very high quality level. Although these sequences were essential for further refining the GRCh38 reference build, he stated that the current reference genome is still not optimal for some highly polymorphic and complex regions of the genome, and does not adequately represent diverse ancestries sufficiently.

Wilson outlined their definition of a ‘gold’ genome as a high-quality, highly contiguous representation of the genome with haplotype resolution of critical regions – created with PacBio reads to perform de novo assembly, a scaffold created using BioNano and/or Dovetail aligned to reference, and BACs to fill targeted regions and shore up gaps. The list of gold genomes in progress includes the Yuroban, Puerto Rican Han Chinese, CEU, and Luhya.  A ‘platinum’ genome is a contiguous, haplotype-resolved representation of the entire genome, two of which currently exist for the CHM1 and CHM13 hydatidiform moles. While ‘silver’ definition standards are to be determined, this category is generally non-trio genomes produced with PacBio and BioNano mapping, and no BAC library.

Richard Gibbs talked about the transition to genomic medicine, which hasn’t been as simple as people would like due to such issues as the incomplete reference genome, the difficulty in characterizing some variation, and the lack of knowledge about the function of some genes. At Baylor, most of the human genome sequencing is done for children with Mendelian disorders. He said that among 7,000 samples processed using short-read exome sequencing, only about 25% of these cases are solved. The relatively low diagnosis rate is likely due to structural variation and other regions not captured by short reads.

He discussed some ways to get to structural variation including PacBio sequencing and PBJelly and Parliament analysis routines, using as little as 10-fold PacBio coverage. Using these methods they are closing gaps in the genomes of various species, for example – he noted that in the sheep genome they have closed 70% of gaps with PacBio reads. He also mentioned the use of PBHoney to identify inconsistencies between reads and the reference, and that long-range capture strategies using a combination of Nimblegen and PacBio are ‘going beautifully so far.’

To close the workshop, Jonas Korlach, Chief Scientific Officer at PacBio, built on Hunkapiller’s comments by talking about the technology waves that have followed the initial human genome sequencing project, where we are today, and where we are going.  Today, we are in what Korlach calls the 4th wave, where more comprehensive whole-genome re-sequencing is occurring, and we are nearing the 5th, when we will actually be able to free ourselves from reference genomes and sequence everything de novo.

Korlach also touched on some of the new developments PacBio is working on, which include amplification-free target enrichment methods, using Cas9 enzyme for targeting, and sequencing native DNA. Other progress will come through the ability to use PacBio sequencing to phase alleles and more comprehensively capture all size and types of variants into haplotigs (contiguous haplotype-sequence blocks). Barcoding samples for isoform (Iso-Seq) sequencing and allele-specific methylation analyses are also in the works.

Watch the recording of the entire workshop session.

Subscribe for blog updates:

Archives