fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 19, 2021

Infographic: SMRT Sequencing – How it works

PacBio Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce exceptionally long reads with high accuracy. SMRT Sequencing allows you to accelerate your science with the complete range of PacBio applications to produce data you can trust.

Read More »

Thursday, August 19, 2021

Infographic: A brief history of microbiology

Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…

Read More »

Thursday, August 19, 2021

Case Study: Sequencing an historic bacterial collection for the future

The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.

Read More »

Tuesday, June 1, 2021

Enrichment of unamplified DNA and long-read SMRT Sequencing to unlock repeat expansion disorders

Nucleotide repeat expansions are a major cause of neurological and neuromuscular disease in humans, however, the nature of these genomic regions makes characterizing them extremely challenging. Accurate DNA sequencing of repeat expansions using short-read sequencing technologies is difficult, as short-read technologies often cannot read through regions of low sequence complexity. Additionally, these short reads do not span the entire region of interest and therefore sequence assembly is required. Lastly, most target enrichment methods are reliant upon amplification which adds the additional caveat of PCR bias. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system for specific…

Read More »

Friday, February 5, 2021

ASHG Virtual Poster: Enrichment of unamplified DNA and long-read SMRT Sequencing to unlock repeat expansion disorders

PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.

Read More »

Friday, February 5, 2021

Webinar: SMRT Sequencing applications in plant and animal sciences: an overview

In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.

Read More »

Friday, February 5, 2021

Webinar: Beyond Gene Editing: How CRISPR/Cas9 enables sequencing of difficult regions of the genome

In this webinar, Jenny Ekholm and Paul Kotturi provide an overview of the PacBio No-Amp targeted sequencing application and its uses for targeting hard-to-amplify genes. This approach couples CRISPR-Cas9 with Single Molecule, Real Time (SMRT) Sequencing to enrich targets, without the need for PCR amplification, and generate complete sequence information with base-level resolution.

Read More »

Friday, February 5, 2021

Video: Introduction to PacBio highly accurate long-read sequencing

PacBio Sequencing is powered by Single Molecule, Real-Time (SMRT) Sequencing technology. The Sequel II System offers the affordable, highly accurate long reads needed to gain comprehensive views of genomes, transcriptomes, and epigenomes. Watch this video to get to know the Sequel II System, explore the key advantages of SMRT Sequencing, and learn how its applications can be used to drive new discoveries.

Read More »

Friday, February 5, 2021

Webinar: Sequencing 101 – How long-read sequencing improves access to genetic information

In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.

Read More »

Tuesday, April 21, 2020

Porous Zero-Mode Waveguides for Picogram-Level DNA Capture.

We have recently shown that nanopore zero-mode waveguides are effective tools for capturing picogram levels of long DNA fragments for single-molecule DNA sequencing. Despite these key advantages, the manufacturing of large arrays is not practical due to the need for serial nanopore fabrication. To overcome this challenge, we have developed an approach for the wafer-scale fabrication of waveguide arrays on low-cost porous membranes, which are deposited using molecular-layer deposition. The membrane at each waveguide base contains a network of serpentine pores that allows for efficient electrophoretic DNA capture at picogram levels while eliminating the need for prohibitive serial pore milling.…

Read More »

Tuesday, April 21, 2020

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.

Read More »

Tuesday, April 21, 2020

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…

Read More »

1 2

Subscribe for blog updates:

Archives