Menu
July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi.

The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.


July 7, 2019  |  

Complete genome sequence of Sulfitobacter sp. strain D7, a virulent bacterium isolated from an Emiliania huxleyi algal bloom in the North Atlantic.

A Rhodobacterales bacterium, Sulfitobacter sp. strain D7, was isolated from an Emiliania huxleyi bloom in the North Atlantic and has been shown to act as a pathogen and induce cell death of E. huxleyi during lab coculturing. We report here its complete genome sequence comprising one chromosome and five low-copy-number plasmids.


July 7, 2019  |  

BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper

De novo assembly is the process of reconstructing genomes from DNA fragments (reads), which may contain redundancy and errors. Longer reads simplify assembly and improve contiguity of the output, but current long-read technologies come with high error rates. A crucial step of de novo genome assembly for long reads consists of finding overlapping reads. We present Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), which implement a novel approach to compute overlaps using Sparse Generalized Matrix Multiplication (SpGEMM). We present a probabilistic model which demonstrates the soundness of using short, fixed length k-mers to detect overlaps, avoiding expensive pairwise alignment of all reads against all others. We then introduce a notion of reliable k-mers based on our probabilistic model. The use of reliable k-mers eliminates both the k-mer set explosion that would otherwise happen with highly erroneous reads and the spurious overlaps due to k-mers originating from repetitive regions. Finally, we present a new method to separate true alignments from false positives depending on the alignment score. Using this methodology, which is employed in BELLAtextquoterights precise mode, the probability of false positives drops exponentially as the length of overlap between sequences increases. On simulated data, BELLA achieves an average of 2.26% higher recall than state-of-the-art tools in its sensitive mode and 18.90% higher precision than state-of-the-art tools in its precise mode, while being performance competitive.


July 7, 2019  |  

Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35.

The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35.The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2-4 µm-when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C-C and C-O-C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC-MS analysis. Through genome sequencing and annotation, and from GC-MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria.Elucidation of the ß-aryl ether cleavage pathway in the strain SP-35 indicates that the ß-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future.


July 7, 2019  |  

Draft genome sequence of Olsenella sp. KGMB 04489 isolated from healthy Korean human feces

The genus of Olsenella has been isolated from vertebrate animal mouth, rumen, and feces. Olsenella sp. KGMB 04489 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Olsenella sp. KGMB 04489 was analyzed using the PacBio Sequel platform. The genome comprises a 2,108,034 bp chromosome with a G + C content of 65.50%, 1,838 total genes, 13 rRNA genes, and 52 tRNA genes. Also, we found that strain KGMB 04489 had some genes for hydrolysis enzymes, and antibiotic biosynthesis and resistance in its genome based on the result of genome analysis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.