Menu
July 7, 2019

Heat resistance mediated by pLM58 plasmid-borne ClpL in Listeria monocytogenes.

Listeria monocytogenes is one of the most heat-resistant non-spore-forming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmid-mediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wild-type L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log10 reduction) than strain AL4E (1.4 CFU/ml log10 reduction) after heating at 55°C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log10 reduction) at 55°C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log10 reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log10 reduction) at 55°C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCEListeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.


July 7, 2019

Insights from the genome sequence of Mycobacterium lepraemurium: Massive gene decay and reductive evolution.

Mycobacterium lepraemurium is the causative agent of murine leprosy, a chronic, granulomatous disease similar to human leprosy. Due to the similar clinical manifestations of human and murine leprosy and the difficulty of growing both bacilli axenically, Mycobacterium leprae and M. lepraemurium were once thought to be closely related, although it was later suggested that M. lepraemurium might be related to Mycobacterium avium In this study, the complete genome of M. lepraemurium was sequenced using a combination of PacBio and Illumina sequencing. Phylogenomic analyses confirmed that M. lepraemurium is a distinct species within the M. avium complex (MAC). The M. lepraemurium genome is 4.05 Mb in length, which is considerably smaller than other MAC genomes, and it comprises 2,682 functional genes and 1,139 pseudogenes, which indicates that M. lepraemurium has undergone genome reduction. An error-prone repair homologue of the DNA polymerase III a-subunit was found to be nonfunctional in M. lepraemurium, which might contribute to pseudogene formation due to the accumulation of mutations in nonessential genes. M. lepraemurium has retained the functionality of several genes thought to influence virulence among members of the MAC.IMPORTANCEMycobacterium lepraemurium seems to be evolving toward a minimal set of genes required for an obligatory intracellular lifestyle within its host, a niche seldom adopted by most mycobacteria, as they are free-living. M. lepraemurium could be used as a model to elucidate functions of genes shared with other members of the MAC. Its reduced gene set can be exploited for studying the essentiality of genes in related pathogenic species, which might lead to discovery of common virulence factors or clarify host-pathogen interactions. M. lepraemurium can be cultivated in vitro only under specific conditions and even then with difficulty. Elucidating the metabolic (in)capabilities of M. lepraemurium will help develop suitable axenic media and facilitate genetic studies. Copyright © 2017 Benjak et al.


July 7, 2019

Variant review with the Integrative Genomics Viewer.

Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV’s variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR.©2017 American Association for Cancer Research.


July 7, 2019

Tools for annotation and comparison of structural variation.

The impact of structural variants (SVs) on a variety of organisms and diseases like cancer has become increasingly evident. Methods for SV detection when studying genomic differences across cells, individuals or populations are being actively developed. Currently, just a few methods are available to compare different SVs callsets, and no specialized methods are available to annotate SVs that account for the unique characteristics of these variant types. Here, we introduce SURVIVOR_ant, a tool that compares types and breakpoints for candidate SVs from different callsets and enables fast comparison of SVs to genomic features such as genes and repetitive regions, as well as to previously established SV datasets such as from the 1000 Genomes Project. As proof of concept we compared 16 SV callsets generated by different SV calling methods on a single genome, the Genome in a Bottle sample HG002 (Ashkenazi son), and annotated the SVs with gene annotations, 1000 Genomes Project SV calls, and four different types of repetitive regions. Computation time to annotate 134,528 SVs with 33,954 of annotations was 22 seconds on a laptop.


July 7, 2019

Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing.

Microsatellite expansion, such as trinucleotide repeat expansion (TRE), is known to cause a number of genetic diseases. Sanger sequencing and next-generation short-read sequencing are unable to interrogate TRE reliably. We developed a novel algorithm called RepeatHMM to estimate repeat counts from long-read sequencing data. Evaluation on simulation data, real amplicon sequencing data on two repeat expansion disorders, and whole-genome sequencing data generated by PacBio and Oxford Nanopore technologies showed superior performance over competing approaches. We concluded that long-read sequencing coupled with RepeatHMM can estimate repeat counts on microsatellites and can interrogate the “unsequenceable” genomic trinucleotide repeat disorders.


July 7, 2019

Complete genome sequence of Pseudomonas corrugata strain RM1-1-4, a stress protecting agent from the rhizosphere of an oilseed rape bait plant

Pseudomonas corrugata strain RM1-1-4 is a rhizosphere colonizer of oilseed rape. A previous study has shown that this motile, Gram-negative, non-sporulating bacterium is an effective stress protecting and biocontrol agent, which protects their hosts against abiotic and biotic stresses. Here, we announce and describe the complete genome sequence of P. corrugata RM1-1-4 consisting of a single 6.1 Mb circular chromosome that encodes 5189 protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes predicting functions such as detoxifying mechanisms, stress inhibitors, exoproteases, lipoproteins or volatile components as well as rhizobactin siderophores and spermidine. Further analysis of its genome will help to identify traits promising for stress protection, biocontrol and plant growth promotion properties.


July 7, 2019

Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus).

The de novo assembly of repeat-rich mammalian genomes using only high-throughput short read sequencing data typically results in highly fragmented genome assemblies that limit downstream applications. Here, we present an iterative approach to hybrid de novo genome assembly that incorporates datasets stemming from multiple genomic technologies and methods. We used this approach to improve the gray mouse lemur (Microcebus murinus) genome from early draft status to a near chromosome-scale assembly.We used a combination of advanced genomic technologies to iteratively resolve conflicts and super-scaffold the M. murinus genome.We improved the M. murinus genome assembly to a scaffold N50 of 93.32 Mb. Whole genome alignments between our primary super-scaffolds and 23 human chromosomes revealed patterns that are congruent with historical comparative cytogenetic data, thus demonstrating the accuracy of our de novo scaffolding approach and allowing assignment of scaffolds to M. murinus chromosomes. Moreover, we utilized our independent datasets to discover and characterize sequences associated with centromeres across the mouse lemur genome. Quality assessment of the final assembly found 96% of mouse lemur canonical transcripts nearly complete, comparable to other published high-quality reference genome assemblies.We describe a new assembly of the gray mouse lemur (Microcebus murinus) genome with chromosome-scale scaffolds produced using a hybrid bioinformatic and sequencing approach. The approach is cost effective and produces superior results based on metrics of contiguity and completeness. Our results show that emerging genomic technologies can be used in combination to characterize centromeres of non-model species and to produce accurate de novo chromosome-scale genome assemblies of complex mammalian genomes.


July 7, 2019

Complete genome sequence of Salmonella enterica subsp. enterica serovar Minnesota strain

Mango has been implicated as food vehicle in several Salmonella-causing foodborne outbreaks. Here, Salmonella enterica subsp. enterica serovar Minnesota was isolated from fresh mango fruit imported from Mexico in 2014. The complete genome sequence of S. Minnesota CFSAN017963 was sequenced using single-molecule real-time DNA sequencing. Distinct prophage regions, Salmonella pathogenicity islands, and fimbrial gene clusters were observed in comparative genomic analysis on S. Minnesota CFSAN017963 with other phylogenetically closely related Salmonella serovars. Core genome multilocus sequencing typing analysis of all the S. Minnesota isolates in the Genbank and Enterobase also revealed a high genomic diversity among the genomes analyzed.


July 7, 2019

Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon.

Bioremediation in hypersaline environments is particularly challenging since the microbes that tolerate such harsh environments and degrade pollutants are quite scarce. Haloarchaea, however, due to their inherent ability to grow at high salt concentrations, hold great promise for remediating the contaminated hypersaline sites. This study aimed to isolate and characterize novel haloarchaeal strains with potentials in hydrocarbon degradation. A haloarchaeal strain IM1011 was isolated from Changlu Tanggu saltern near Da Gang Oilfield in Tianjin (China) by enrichment culture in hypersaline medium containing hexadecane. It could degrade 57 ± 5.2% hexadecane (5 g/L) in the presence of 3.6 M NaCl at 37 °C within 24 days. To get further insights into the mechanisms of petroleum hydrocarbon degradation in haloarchaea, complete genome (3,778,989 bp) of IM1011 was sequenced. Phylogenetic analysis of 16S rRNA gene, RNA polymerase beta-subunit (rpoB’) gene and of the complete genome suggested IM1011 to be a new species in Halorientalis genus, and the name Halorientalis hydrocarbonoclasticus sp. nov., is proposed. Notably, with insights from the IM1011 genome sequence, the involvement of diverse alkane hydroxylase enzymes and an intact ß-oxidation pathway in hexadecane biodegradation was predicted. This is the first hexadecane-degrading strain from Halorientalis genus, of which the genome sequence information would be helpful for further dissecting the hydrocarbon degradation by haloarchaea and for their application in bioremediation of oil-polluted hypersaline environments.


July 7, 2019

Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori.

The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ?modH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.


July 7, 2019

Identification of sRNA mediated responses to nutrient depletion in Burkholderia pseudomallei.

The Burkholderia genus includes many species that are known to survive in diverse environmental conditions including low nutrient environments. One species, Burkholderia pseudomallei is a versatile pathogen that can survive in a wide range of hosts and environmental conditions. In this study, we investigated how a nutrient depleted growth environment evokes sRNA mediated responses by B. pseudomallei. Computationally predicted B. pseudomallei D286 sRNAs were mapped to RNA-sequencing data for cultures grown under two conditions: (1) BHIB as a nutrient rich media reference environment and (2) M9 media as a nutrient depleted stress environment. The sRNAs were further selected to identify potentially cis-encoded systems by investigating their possible interactions with their flanking genes. The mappings of predicted sRNA genes and interactions analysis to their flanking genes identified 12 sRNA candidates that may possibly have cis-acting regulatory roles that are associated to a nutrient depleted growth environment. Our approach can be used for identifying novel sRNA genes and their possible role as cis-mediated regulatory systems.


July 7, 2019

Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis.

Clostridium perfringens is ubiquitous in nature. It is a normal inhabitant in the intestinal tract of animals and humans. As the primary etiological agent of gas gangrene, necrosis and bacteremia, C. perfringens causes food poisoning, necrotic enteritis (NE), and even death. Epidemiology research has indicated that the increasing incidence of NE in poultry is associated with the withdrawal of in-feed antibiotic growth promoters in poultry production in response to government regulations. The recent omics studies have indicated that bacterial virulence is typically linked to highly efficient conjugative transfer of toxins, or plasmids carrying antibiotic-resistance traits. Currently, there is limited information on understanding of host-pathogen interaction in NE caused by virulent strains of C. perfringens. Elucidating such pathogenesis has practical impacts on fighting infectious diseases through adopting strategies of prophylactic or therapeutic interventions. In this report, we sequenced and analyzed the genome of C. perfringens Del1 strain using the hybrid of PacBio and Illumina sequencing technologies.Sequence analysis indicated that Del1 strain comprised a single circular chromosome with a complete 3,559,163 bp and 4 plasmids: pDel1_1 (82,596 bp), pDel1_2 (69,827 bp), pDel1_3 (49,582 bp), and pDel1_4 (49,728 bp). The genome had 3361 predicted coding DNA sequences, harbored numerous genes for pathogenesis and virulence factors, including 6 for antibiotic and antimicrobial resistance, and 3 phage-encoded genes. Phylogenetic analysis revealed that Del1 strain had similar genome and plasmid sequences to the CP4 strain.Complete chromosomal and plasmid sequences of Del1 strain are presented in this report. Since Del1 was isolated from a field disease outbreak, this strain is a good source to identify virulent genes that cause many damaging effects of Clostridial infections in chicken gut. Genome sequencing of the chicken pathogenic isolates from commercial farms provides valuable insights into the molecular pathogenesis of C. perfringens as a gastrointestinal pathogen in food animals. The detailed information on gene sequencing of this important field strain will benefit the development of novel vaccines specific for C. perfringens-induced NE in chickens.


July 7, 2019

Single molecule sequencing-guided scaffolding and correction of draft assemblies.

Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies.We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm.Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.


July 7, 2019

A recurrence-based approach for validating structural variation using long-read sequencing technology.

Although numerous algorithms have been developed to identify structural variations (SVs) in genomic sequences, there is a dearth of approaches that can be used to evaluate their results. This is significant as the accurate identification of structural variation is still an outstanding but important problem in genomics. The emergence of new sequencing technologies that generate longer sequence reads can, in theory, provide direct evidence for all types of SVs regardless of the length of the region through which it spans. However, current efforts to use these data in this manner require the use of large computational resources to assemble these sequences as well as visual inspection of each region. Here we present VaPoR, a highly efficient algorithm that autonomously validates large SV sets using long-read sequencing data. We assessed the performance of VaPoR on SVs in both simulated and real genomes and report a high-fidelity rate for overall accuracy across different levels of sequence depths. We show that VaPoR can interrogate a much larger range of SVs while still matching existing methods in terms of false positive validations and providing additional features considering breakpoint precision and predicted genotype. We further show that VaPoR can run quickly and efficiency without requiring a large processing or assembly pipeline. VaPoR provides a long read-based validation approach for genomic SVs that requires relatively low read depth and computing resources and thus will provide utility with targeted or low-pass sequencing coverage for accurate SV assessment. The VaPoR Software is available at: https://github.com/mills-lab/vapor.© The Authors 2017. Published by Oxford University Press.


July 7, 2019

The state of whole-genome sequencing

Over the last decade, a technological paradigm shift has slashed the cost of DNA sequencing by over five orders of magnitude. Today, the cost of sequencing a human genome is a few thousand dollars, and it continues to fall. Here, we review the most cost-effective platforms for whole-genome sequencing (WGS) as well as emerging technologies that may displace or complement these. We also discuss the practical challenges of generating and analyzing WGS data, and how WGS has unlocked new strategies for discovering genes and variants underlying both rare and common human diseases.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.