Menu
June 1, 2021  |  

Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing.

Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective procedure to detect adenomas, the precursors to CRC, is colonoscopy, which reduces CRC incidence by 80%. However, it is an invasive approach that is unpleasant for the patient, expensive, and poses some risk of complications such as colon perforation. A non-invasive screening approach with detection rates comparable to those of colonoscopy has not yet been established. The current study applies Pacific Biosciences third generation, single molecule sequencing to the inspection of CRC-driving mutations. Our approach combines the screening power and the extremely high accuracy of circular consensus (CCS) third generation sequencing with the non-invasiveness of using stool DNA to detect CRC-associated mutations present at extremely low frequencies and establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and early stage adenomas. We performed a series of experiments using a pool of fifteen amplicons covering the genes most frequently mutated in CRC (APC, Beta Catenin, KRAS, BRAF, and TP53), ensuring a theoretical screening coverage of over 97% for both CRC and adenomas. The assay was able to detect mutations in DNA isolated from stool samples from patients diagnosed with CRC at frequencies below 0.5 % with no false positives. The mutations were then confirmed by sequencing DNA isolated from the excised tumor samples. Our assay should be sensitive enough to allow the early identification of adenomatous polyps using stool DNA as analyte. In conclusion, we have developed an assay to detect mutations in the genes associated with CRC and adenomas using Pacific Biosciences RS Single Molecule, Real Time Circular Consensus Sequencing (SMRT-CCS). With no systematic bias and a much higher raw base-calling quality (CCS) compared to other sequencing methods, the assay was able to detect mutations in stool DNA at frequencies below 0.5 % with no false positives. This level of sensitivity should be sufficient to allow the detection of most adenomatous polyps using stool DNA as analyte, a feature that would make our approach the first non-invasive assay with a sensitivity comparable to that of colonoscopy and a strong candidate for the non-invasive preventive CRC screening of the general population.


June 1, 2021  |  

Whole genome sequencing and epigenome characterization of cancer cells using the PacBio platform.

The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for the first time cancer genomes of both drug-sensitive and drug-resistant PC- 9 cells using long-read PacBio sequencing. The PacBio data allowed us to generate a high-quality, de novo assembly of this cancer genome, enabling the detection of forms of genomic variations at all size scales, including SNPs, structural variations, copy number alterations, gene fusions, and translocations. The data simultaneously provide a global view of epigenetic DNA modifications such as methylation. We will present findings on large-scale changes in the methylation status across the cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Epigenome characterization of human genomes using the PacBio platform

In addition to the genome and transcriptome, epigenetic information is essential to understand biological processes and their regulation, and their misregulation underlying disease. Traditionally, epigenetic DNA modifications are detected using upfront sample preparation steps such as bisulfite conversion, followed by sequencing. Bisulfite sequencing has provided a wealth of knowledge about human epigenetics, however it does not access the entire genome due to limitations in read length and GC- bias of the sequencing technologies used. In contrast, Single Molecule, Real-Time (SMRT) DNA Sequencing is unique in that it can detect DNA base modifications as part of the sequencing process. It can thereby leverage the long read lengths and lack of GC bias for more comprehensive views of the human epigenome. I will highlight several examples of this capability towards the generation of new biological insights, including the resolution of methylation states in repetitive and GC-rich regions of the genome, and large-scale changes in the methylation status across a cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Full-length transcriptome sequencing of melanoma cell line complements long-read assessment of genomic rearrangements

Transcriptome sequencing has proven to be an important tool for understanding the biological changes in cancer genomes including the consequences of structural rearrangements. Short read sequencing has been the method of choice, as the high throughput at low cost allows for transcript quantitation and the detection of even rare transcripts. However, the reads are generally too short to reconstruct complete isoforms. Conversely, long-read approaches can provide unambiguous full-length isoforms, but lower throughput has complicated quantitation and high RNA input requirements has made working with cancer samples challenging. Recently, the COLO 829 cell line was sequenced to 50-fold coverage with PacBio SMRT Sequencing. To validate and extend the findings from this effort, we have generated long-read transcriptome data using an updated PacBio Iso-Seq method, the results of which will be shared at the AACR 2019 General Meeting. With this complimentary transcriptome data, we demonstrate how recent innovations in the PacBio Iso-Seq method sample preparation and sequencing chemistry have made long-read sequencing of cancer transcriptomes more practical. In particular, library preparation has been simplified and throughput has increased. The improved protocol has reduced sample prep time from several days to one day while reducing the sample input requirements ten-fold. In addition, the incorporation of unique molecular identifier (UMI) tags into the workflow has improved the bioinformatics analysis. Yield has also increased, with v3 sequencing chemistry typically delivering > 30 Gb per SMRT Cell 1M. By integrating long and short read data, we demonstrate that the Iso-Seq method is a practical tool for annotating cancer genomes with high-quality transcript information.


June 1, 2021  |  

Structural variant detection with long read sequencing reveals driver and passenger mutations in a melanoma cell line

Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has important implications for cancer research, as it is clear that SVs are both common and biologically important in many cancer subtypes, including colorectal, breast and ovarian cancer. Without confident and comprehensive detection of structural variants, it is unlikely we have a sufficiently complete picture of all the genomic changes that impact cancer development, disease progression, treatment response, drug resistance, and relapse. To begin to address this unmet need, we have sequenced the COLO829 tumor and matched normal lymphoblastoid cell lines to 49- and 51-fold coverage, respectively, with PacBio SMRT Sequencing, with the goal of developing a high-confidence structural variant call set that can be used to empirically evaluate cost-effective experimental designs for larger scale studies and develop structural variation calling software suitable for cancer genomics. Structural variant calling revealed over 21,000 deletions and 19,500 insertions larger than 20 bp, nearly four times the number of events detected with short-read sequencing. The vast majority of events are shared between the tumor and normal, with about 100 putative somatic deletions and 400 insertions, primarily in microsatellites. A further 40 rearrangements were detected, nearly exclusively in the tumor. One rearrangement is shared between the tumor and normal, t(5;X) which disrupts the mismatch repeat gene MSH3, and is likely a driver mutation. Generating high-confidence call sets that cover the entire size-spectrum of somatic variants from a range of cancer model systems is the first step in determining what will be the best approach for addressing an ongoing blind spot in our current understanding of cancer genomes. Here the application of PacBio sequencing to a melanoma cancer cell line revealed thousands of previously overlooked variants, including a mutation likely involved in tumorogenesis.


April 21, 2020  |  

The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.

Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call “B-omics”. We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.


April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.