April 21, 2020  |  

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of the mechanisms of its antimicrobial activity, and for its future application.


April 21, 2020  |  

Genome sequence analysis of 91 Salmonella Enteritidis isolates from mice caught on poultry farms in the mid 1990s.

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The sefD mutation was the most frequently encountered mutation and it was prevalent in human, poultry, environmental and mouse isolates. These results confirm previous assessments of the mouse as a rich source of Salmonella enterica serovar Enteritidis that varies in genotype and phenotype. Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding 1.

Monitoring changes in terrestrial arthropod communities over space and time requires a dramatic increase in the speed and accuracy of processing samples that cannot be achieved with morphological approaches. The combination of DNA barcoding and Malaise traps allows expedited, comprehensive inventories of species abundance whose cost will rapidly decline as high-throughput sequencing technologies advance. Aside from detailing protocols from specimen sorting to data release, this paper describes their use in a survey of arthropod diversity in a national park that examined 21?194 specimens representing 2255 species. These protocols can support arthropod monitoring programs at regional, national, and continental scales.


April 21, 2020  |  

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of N. flagelliforme to thrive under extreme abiotic stresses is supported by the acquisition of genes involved in the protection of photosynthetic apparatus, the formation of monounsaturated fatty acids, responses to UV radiation, and a peculiar role of ornithine metabolism. Transcriptome analysis revealed a distinct acclimation strategy to rehydration, including the strong constitutive expression of genes encoding photosystem I assembly factors and the involvement of post-transcriptional control mechanisms of photosynthetic resuscitation. Our results provide insights into the adaptive mechanisms of subaerial cyanobacteria in their harsh habitats and have important implications to understand the evolutionary transition of cyanobacteria from aquatic environments to terrestrial ecosystems. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion.

A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of S. anginosus NCTC 10713T (99.2% and 97.6%, respectively), S. constellatus NCTC11325T (87.8% and 91.4%, respectively), and S. intermedia SK54T (85.8% and 91.2%, respectively) rather than those of S. sinensis HKU4T (80.5% and 82.6%). The complete genome of strain ChDC F135T consisted of 1,901,251 bp and the G+C content was 38.9 mol %. Average nucleotide identity value between strain ChDC F135T and S. sinensis HKU4T or S. anginosus NCTC 10713T were 75.7% and 95.6%, respectively. The C14:0 composition of the cellular fatty acids of strain ChDC F135T (32.8%) was different from that of S. intermedia (6-8%), S. constellatus (6-13%), and S. anginosus (13-20%). Based on the results of phylogenetic and phenotypic analysis, strain ChDC F135T (=?KCOM 2412T?=?JCM 33300T) was classified as a type strain of a novel species of the genus Streptococcus, for which we proposed the name Streptococcus periodonticum sp. nov.


April 21, 2020  |  

Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans.

Marine algae convert a substantial fraction of fixed carbon dioxide into various polysaccharides. Flavobacteriia that are specialized on algal polysaccharide degradation feature genomic clusters termed polysaccharide utilization loci (PULs). As knowledge on extant PUL diversity is sparse, we sequenced the genomes of 53 North Sea Flavobacteriia and obtained 400 PULs. Bioinformatic PUL annotations suggest usage of a large array of polysaccharides, including laminarin, a-glucans, and alginate as well as mannose-, fucose-, and xylose-rich substrates. Many of the PULs exhibit new genetic architectures and suggest substrates rarely described for marine environments. The isolates’ PUL repertoires often differed considerably within genera, corroborating ecological niche-associated glycan partitioning. Polysaccharide uptake in Flavobacteriia is mediated by SusCD-like transporter complexes. Respective protein trees revealed clustering according to polysaccharide specificities predicted by PUL annotations. Using the trees, we analyzed expression of SusC/D homologs in multiyear phytoplankton bloom-associated metaproteomes and found indications for profound changes in microbial utilization of laminarin, a-glucans, ß-mannan, and sulfated xylan. We hence suggest the suitability of SusC/D-like transporter protein expression within heterotrophic bacteria as a proxy for the temporal utilization of discrete polysaccharides.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita.

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes. Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Oenococcus sicerae sp. nov., isolated from French cider.

Two Gram-stain-positive, small ellipsoidal cocci, non-motile, oxidase- and catalase-negative, and facultative anaerobic strains (UCMA15228T and UCMA17102) were isolated in France, from fermented apple juices (ciders). The 16S rRNA gene sequence was identical between the two isolates and showed 97 % similarity with respect to the closest related species Oenococcus oeni and O. kitaharae. Therefore, the two isolates were classified within the genus Oenococcus. The phylogeny based on the pheS gene sequences also confirmed the position of the new taxon. DNA-DNA hybridizations based on in silico genome-to-genome comparisons (GGDC) and Average Nucleotide Identity (ANI) values, as well as species-specific PCR, validated the novelty of the taxon. Various phenotypic characteristics such as the optimum temperature and pH for growth, the ability to metabolise sugars, the aptitude to perform the malolactic fermentation, and the resistance to ethanol and NaCl, revealed that the two strains are distinguishable from the other members of the Oenococcus genus. The combined genotypic and phenotypic data support the classification of strains UCMA15228T and UCMA17102 into a novel species of Oenococcus, for which the name O. sicerae sp. nov. is proposed. The type strain is UCMA15228T (=DSM107163T=CIRM-BIA2288T).Copyright © 2018 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation.

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp. Copyright © 2017 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Midrib Sucrose Accumulation and Sugar Transporter Gene Expression in YCS-Affected Sugarcane Leaves

Sucrose accumulation and decreased photosynthesis are early symptoms of yellow canopy syndrome (YCS) in sugarcane (Saccharum spp.), and precede the visual yellowing of the leaves. To investigate broad-scale gene expression changes during YCS-onset, transcriptome analyses coupled to metabolome analyses were performed. Across leaf tissues, the greatest number of differentially expressed genes related to the chloroplast, and the metabolic processes relating to nitrogen and carbohydrates. Five genes represented 90% of the TPM (Transcripts Per Million) associated with the downregulation of transcription during YCS-onset, which included PSII D1 (PsbA). This differential expression was consistent with a feedback regulatory effect upon photosynthesis. Broad-scale gene expression analyses did not reveal a cause for leaf sugar accumulation during YCS-onset. Interestingly, the midrib showed the greatest accumulation of sugars, followed by symptomatic lamina. To investigate if phloem loading/reloading may be compromised on a gene expression level – to lead to leaf sucrose accumulation – sucrose transport-related proteins of SWEETs, Sucrose Transporters (SUTs), H+-ATPases and H+-pyrophosphatases (H+-PPases) were characterised from a sugarcane transcriptome and expression analysed. Two clusters of Type I H+-PPases, with one upregulated and the other downregulated, were evident. Although less pronounced, a similar pattern of change was observed for the H+-ATPases. The disaccharide transporting SWEETs were downregulated after visual symptoms were present, and a monosaccharide transporting SWEET upregulated preceding, as well as after, symptom development. SUT gene expression was the least responsive to YCS development. The results are consistent with a reduction of photoassimilate movement through the phloem leading to sucrose build-up in the leaf.


April 21, 2020  |  

Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes.

Bacterial plasmids carry genes that code for additional traits such as osmoregulation, CO2 fixation, antibiotic and heavy metal resistance, root nodulation and nitrogen fixation. The main objective of the current study was to identify plasmid-conferring osmoregulatory genes in bacteria isolated from rhizospheric and non-rhizospheric soils of halophytes (Salsola stocksii and Atriplex amnicola). More than 55% of halophilic bacteria from the rhizosphere and 70% from non-rhizospheric soils were able to grow at 3?M salt concentrations. All the strains showed optimum growth at 1.5-3.0?M NaCl. Bacterial strains from the Salsola rhizosphere showed maximum (31%) plasmid elimination during curing experiments as compared to bacterial strains from the Atriplex rhizosphere and non-rhizospheric soils. Two plasmid cured strains Bacillus HL2HP6 and Oceanobacillus HL2RP7 lost their ability to grow in halophilic medium, but they grew well on LB medium. The plasmid cured strains also showed a change in sensitivity to specific antibiotics. These plasmids were isolated and transformed into E. coli strains and growth response of wild-type and transformed E. coli strains was compared at 1.5-4?M NaCl concentrations. Chromosomal DNA and plasmids from Bacillus filamentosus HL2HP6 were sequenced by using high throughput sequencing approach. Results of functional analysis of plasmid sequences showed different proteins and enzymes involved in osmoregulation of bacteria, such as trehalose, ectoine synthetase, porins, proline, alanine, inorganic ion transporters, dehydrogenases and peptidases. Our results suggested that plasmid conferring osmoregulatory genes play a vital role to maintain internal osmotic balance of bacterial cells and these genes can be used to develop salt tolerant transgenic crops.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites.

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities. © The Author(s) 2019.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.