June 1, 2021  |  

Genomic DNA sequences of HLA class I alleles generated using multiplexed barcodes and SMRT DNA Sequencing technology.

Allelic-level resolution HLA typing is known to improve survival prognoses post Unrelated Donor (UD) Haematopoietic Stem Cell Transplantation (HSCT). Currently, many commonly used HLA typing methodologies are limited either due to the fact that ambiguity cannot be resolved or that they are not amenable to high-throughput laboratories. Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology enables sequencing of single molecules in isolation and has read-length capabilities to enable whole gene sequencing for HLA. DNA barcode technology labels samples with unique identifiers that can be traced throughout the sequencing process. The use of DNA barcodes means that multiple samples can be sequenced in a single experiment but data can still be attributed to the correct sample. Here we describe the results of experiments that use DNA barcodes to facilitate sequencing of multiple samples for full-length HLA class I genes (known as multiplexing).


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT) Sequencing reads in the 1-2 kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells would generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community, since SMRT Sequencing has been shown to have no sequence-context bias. Long read lengths mean that that it would be reasonable to expect a high number of the reads to include gene fragments useful for analysis.


June 1, 2021  |  

HLA variant identification techniques

The Human Leukocyte Antigen (HLA) genes located on chromosome 6 are responsible for regulating immune function via antigen presentation and are one of the determining factors for stem cell and organ transplantation compatibility. Additionally various alleles within this region have been implicated in autoimmune disorders, cancer, vaccine response and both non-infectious and infectious disease risk. The HLA region is highly variable; containing repetitive regions; and co-dominantly expressed genes. This complicates short read mapping and means that assessing the effect of variation within a gene requires full phase information to resolve haplotypes.One solution to the problem of HLA identification is the use of statistical inference to suggest the most likely diploid alleles given the genotypes observed. The assumption of this approach is the availability of an extensive reference panel. Whilst there exists good population genetics data for imputing European populations, there remains a paucity of information about variation in African populations. Filling this gap is one of the aims of the Genome Diversity in Africa Project and as a first step we are performing a pilot study to identify the optimal method for determining HLA type information for large numbers of samples from African populations.To that end we have obtained samples from 125 consented African participants selected from 5 populations across Africa (Morrocan, Ashanti, Igbo, Kalenjin, and Zulu). The methods included in our pilot study are Sanger sequencing (ABI), NGS on HiSeqX Ten platform (Illumina); long-range PCR combined with single molecule real-time (SMRT) sequencing (PacBio); and for a subset of samples library preparation on GemCode Platform (10x Genomics), which delivers valuable long range contextual information, combined with Illumina NGS sequencing.Results from capillary sequencing suggests the presence of a minimum of two novel alleles. Long Range PCR have been performed initially on a subset of samples using both primers sourced from GenDX and designed as described in Shiina et al (2012). Initial results from both primer sets were promising on Promega DNA test samples but only the GenDX primers proved effective on the African samples, producing consistently PCR products of the expected size in the Igbo, Ashanti, Morrocan and Zulu samples. We will present early results from our evaluation of the different sequencing technologies


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community. Long read lengths translate to a high number of the reads harboring full genes or even full operons for downstream analysis. Here we present the results of circular-consensus sequencing on a mock metagenomic community with an abundance range of multiple orders of magnitude, and compare the results with both 16S and shotgun assembly methods. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows to elucidate meaningful information from the very low-abundance community members. For example, given the above low-input sequencing approach, a community member at 1/1,000 relative abundance would generate 100 1-2 kb sequence fragments having 99% consensus accuracy, with a high probability of containing a gene fragment useful for taxonomic classification or functional insight.


June 1, 2021  |  

Profiling the microbiome in fecal microbiota transplantation using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT®) Sequencing reads in the 1-3kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells on the PacBio RS II would generate >100,000 such reads. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With reads >1 kb at >99% accuracy it is reasonable to expect a high percentage of reads include gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-3 kb range, with >99% accuracy can be generated using the previous generation PacBio RS II or, in much higher throughput, using the new Sequel System. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With single-molecule reads >1 kb at >99% consensus accuracy, it is reasonable to expect a high percentage of reads to include genes or gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

WGS SMRT Sequencing of patient samples from a fecal microbiota transplant trial

Fecal samples were obtained from human subjects in the first blinded, placebo-controlled trial to evaluate the efficacy and safety of fecal microbiota transplant (FMT) for treatment of recurrent C. difficile infection. Samples included pre-and post-FMT transplant, post-placebo transplant, and the donor control; samples were taken at 2 and 8 week post-FMT. Sequencing was done on the PacBio Sequel System, with the goal of obtaining high quality sequences covering whole genes or gene clusters, which will be used to better understand the relationship between the composition and functional capabilities of intestinal microbiomes and patient health. Methods: Samples were randomly sheared to 2-3 kb fragments, a sufficient length to cover most genes, and SMRTbell libraries were prepared using standard protocols. Libraries were run on the Sequel System, which has a throughput of hundreds of thousands of reads per SMRT Cell, adequate yield to sample the complex microbiomes of post-transplant and donor samples.Results: Here we characterize samples, describe library prep methods and detail Sequel System operation, including run conditions. Descriptive statistics of data output (primary analysis) are presented, along with SMRT Analysis reports on circular consensus sequence (CCS) reads generated using an updated algorithm (CCS2). Final sequencing yields are filtered at various levels of predicted accuracy from 90% to 99.9%. Previous studies done using the PacBio RS II System demonstrated the ability to profile at the species level, and in some cases the strain level, and provided functional insight. Conclusions: These results demonstrate that the Sequel System is well-suited for characterization of complex microbial communities, with the ability for high-throughput generation of extremely accurate single-molecule sequences, each several kilobases in length. The entire process from shearing and library prep through sequencing and CCS analysis can be completed in less than 48 hours.


June 1, 2021  |  

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long sequence reads. We have developed a PCR assay for SMRT Sequencing on the PacBio RS II platform in our lab for 3DL1 whole gene sequencing. This approach allows us to obtain allele level typing for 3DL1 genes and could serve as a model to type other KIR genes at allelic level.


June 1, 2021  |  

Analysis of 37,000 Caucasian samples reveals tight linkage between SNP RS9277534 and high resolution typing of HLA-DPB1

HLA-DPB1 mismatching between patients and unrelated donors is known to increase the risk of acute graft-versus-host-disease (GvHD) after hematopoietic stem cell transplantation. If only HLA-DPB1 mismatched donors are available, the genotype defined by the Single Nucleotide Polymorphism (SNP) rs9277534 can be used to select mismatched donors that are well-tolerated. However, since rs9277534 resides within the 3’ untranslated region (UTR), it usually is not analyzed during DPB1 routine typing.


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


June 1, 2021  |  

Using the PacBio Sequel System to taxonomically and functionally classify metagenomic samples in a trial of patients undergoing fecal microbiota transplantation

Whole-sample shotgun sequencing can provide a more detailed view of a metagenomic community than 16S sequencing, but its use in multi-sample experiments is limited by throughput, cost and analysis complexity. While short-read sequencing technologies offer higher throughput, read lengthss less fewer than 500 bp will rarely cover a gene of interest, and necessitate assembly before further analysis. Assembling large fragments requires sampling each community member at a high depth, significantly increasing the amount of sequencing needed, and limiting the analysis of rare community members. Assembly methods also risk It is also possible to incorrectly combine combining sequences from different community members.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.