Menu
September 22, 2019  |  

Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates.

Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)-a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species-a hagfish, a lamprey and a shark-encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500?million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates.


September 22, 2019  |  

The genome of the marine medaka Oryzias melastigma.

Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field-based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole-genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.© 2018 John Wiley & Sons Ltd.


September 22, 2019  |  

Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta).

Red algae are economically valuable for food and in industry. However, their genomic information is limited, and the genomic data of only a few species of red algae have been sequenced and deposited recently. In this study, we annotated a draft genome of the macroalga Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta).The entire 88.98 Mb genome of Gp. lemaneiformis 981 was generated from 13,825 scaffolds (=500 bp) with an N50 length of 30,590 bp, accounting for approximately 91% of this algal genome. A total of 38.73 Mb of scaffold sequences were repetitive, and 9281 protein-coding genes were predicted. A phylogenomic analysis of 20 genomes revealed the relationship among the Chromalveolata, Rhodophyta, Chlorophyta and higher plants. Homology analysis indicated phylogenetic proximity between Gp. lemaneiformis and Chondrus crispus. The number of enzymes related to the metabolism of carbohydrates, including agar, glycoside hydrolases, glycosyltransferases, was abundant. In addition, signaling pathways associated with phytohormones such as auxin, salicylic acid and jasmonates are reported for the first time for this alga.We sequenced and analyzed a draft genome of the red alga Gp. lemaneiformis, and revealed its carbohydrate metabolism and phytohormone signaling characteristics. This work will be helpful in research on the functional and comparative genomics of the order Gracilariales and will enrich the genomic information on marine algae.


September 22, 2019  |  

A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.

Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution.To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: https://doi.org/10.17882/51795 ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements.This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.


September 22, 2019  |  

Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata.

Developmentally programmed genome rearrangements are rare in vertebrates, but have been reported in scattered lineages including the bandicoot, hagfish, lamprey, and zebra finch (Taeniopygia guttata) [1]. In the finch, a well-studied animal model for neuroendocrinology and vocal learning [2], one such programmed genome rearrangement involves a germline-restricted chromosome, or GRC, which is found in germlines of both sexes but eliminated from mature sperm [3, 4]. Transmitted only through the oocyte, it displays uniparental female-driven inheritance, and early in embryonic development is apparently eliminated from all somatic tissue in both sexes [3, 4]. The GRC comprises the longest finch chromosome at over 120 million base pairs [3], and previously the only known GRC-derived sequence was repetitive and non-coding [5]. Because the zebra finch genome project was sourced from male muscle (somatic) tissue [6], the remaining genomic sequence and protein-coding content of the GRC remain unknown. Here we report the first protein-coding gene from the GRC: a member of the a-soluble N-ethylmaleimide sensitive fusion protein (NSF) attachment protein (a-SNAP) family hitherto missing from zebra finch gene annotations. In addition to the GRC-encoded a-SNAP, we find an additional paralogous a-SNAP residing in the somatic genome (a somatolog)-making the zebra finch the first example in which a-SNAP is not a single-copy gene. We show divergent, sex-biased expression for the paralogs and also that positive selection is detectable across the bird a-SNAP lineage, including the GRC-encoded a-SNAP. This study presents the identification and evolutionary characterization of the first protein-coding GRC gene in any organism. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis.

Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi.

Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy.In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi.In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing. Missing genes for enzymes in primary metabolic pathways imply that AM fungi may have a higher dependency on host plants than other biotrophic fungi. These missing metabolic pathways provide a genetic basis to explore the physiological characteristics and auxotrophy of AM fungi.


September 22, 2019  |  

Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation.

Echinoderms exhibit several fascinating evolutionary innovations that are rarely seen in the animal kingdom, but how these animals attained such features is not well understood. Here we report the sequencing and analysis of the genome and extensive transcriptomes of the sea cucumber Apostichopus japonicus, a species from a special echinoderm group with extraordinary potential for saponin synthesis, aestivation and organ regeneration. The sea cucumber does not possess a reorganized Hox cluster as previously assumed for all echinoderms, and the spatial expression of Hox7 and Hox11/13b potentially guides the embryo-to-larva axial transformation. Contrary to the typical production of lanosterol in animal cholesterol synthesis, the oxidosqualene cyclase of sea cucumber produces parkeol for saponin synthesis and has “plant-like” motifs suggestive of convergent evolution. The transcriptional factors Klf2 and Egr1 are identified as key regulators of aestivation, probably exerting their effects through a clock gene-controlled process. Intestinal hypometabolism during aestivation is driven by the DNA hypermethylation of various metabolic gene pathways, whereas the transcriptional network of intestine regeneration involves diverse signaling pathways, including Wnt, Hippo and FGF. Decoding the sea cucumber genome provides a new avenue for an in-depth understanding of the extraordinary features of sea cucumbers and other echinoderms.


September 22, 2019  |  

Genome Assembly.

Genome assembly uses sequence similarity to go from sequencing reads to longer contiguous sequences (contigs). Scaffolds are contigs linked together by gaps where the order and orientation of the contigs is known but the exact sequence connecting two contigs is unknown, represented by Ns which estimate the gap length. Here we describe recommendations for genome assembly for different sequencing technologies, describe organelle assembly, and review how to perform assembly quality control.


September 22, 2019  |  

Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo.

Luo-han-guo (Siraitia grosvenorii), also called monk fruit, is a member of the Cucurbitaceae family. Monk fruit has become an important area for research because of the pharmacological and economic potential of its noncaloric, extremely sweet components (mogrosides). It is also commonly used in traditional Chinese medicine for the treatment of lung congestion, sore throat, and constipation. Recently, a single reference genome became available for monk fruit, assembled from 36.9x genome coverage reads via Illumina sequencing platforms. This genome assembly has a relatively short (34.2 kb) contig N50 length and lacks integrated annotations. These drawbacks make it difficult to use as a reference in assembling transcriptomes and discovering novel functional genes.Here, we offer a new high-quality draft of the S. grosvenorii genome assembled using 31 Gb (~73.8x) long single molecule real time sequencing reads and polished with ~50 Gb Illumina paired-end reads. The final genome assembly is approximately 469.5 Mb, with a contig N50 length of 432,384 bp, representing a 12.6-fold improvement. We further annotated 237.3 Mb of repetitive sequence and 30,565 consensus protein coding genes with combined evidence. Phylogenetic analysis showed that S. grosvenorii diverged from members of the Cucurbitaceae family approximately 40.9 million years ago. With comprehensive transcriptomic analysis and differential expression testing, we identified 4,606 up-regulated genes in the early fruit compared to the leaf, a number of which were linked to metabolic pathways regulating fruit development and ripening.The availability of this new monk fruit genome assembly, as well as the annotations, will facilitate the discovery of new functional genes and the genetic improvement of monk fruit.


September 22, 2019  |  

High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant.

Salvia splendens Ker-Gawler, scarlet or tropical sage, is a tender herbaceous perennial widely introduced and seen in public gardens all over the world. With few molecular resources, breeding is still restricted to traditional phenotypic selection, and the genetic mechanisms underlying phenotypic variation remain unknown. Hence, a high-quality reference genome will be very valuable for marker-assisted breeding, genome editing, and molecular genetics.We generated 66 Gb and 37 Gb of raw DNA sequences, respectively, from whole-genome sequencing of a largely homozygous scarlet sage inbred line using Pacific Biosciences (PacBio) single-molecule real-time and Illumina HiSeq sequencing platforms. The PacBio de novo assembly yielded a final genome with a scaffold N50 size of 3.12 Mb and a total length of 808 Mb. The repetitive sequences identified accounted for 57.52% of the genome sequence, and ?54,008 protein-coding genes were predicted collectively with ab initio and homology-based gene prediction from the masked genome. The divergence time between S. splendens and Salvia miltiorrhiza was estimated at 28.21 million years ago (Mya). Moreover, 3,797 species-specific genes and 1,187 expanded gene families were identified for the scarlet sage genome.We provide the first genome sequence and gene annotation for the scarlet sage. The availability of these resources will be of great importance for further breeding strategies, genome editing, and comparative genomics among related species.


September 22, 2019  |  

Whole genome and transcriptome maps of the entirely black native Korean chicken breed Yeonsan Ogye.

Yeonsan Ogye (YO), an indigenous Korean chicken breed (Gallus gallus domesticus), has entirely black external features and internal organs. In this study, the draft genome of YO was assembled using a hybrid de novo assembly method that takes advantage of high-depth Illumina short reads (376.6X) and low-depth Pacific Biosciences (PacBio) long reads (9.7X).The contig and scaffold NG50s of the hybrid de novo assembly were 362.3 Kbp and 16.8 Mbp, respectively. The completeness (97.6%) of the draft genome (Ogye_1.1) was evaluated with single-copy orthologous genes using Benchmarking Universal Single-Copy Orthologs and found to be comparable to the current chicken reference genome (galGal5; 97.4%; contigs were assembled with high-depth PacBio long reads (50X) and scaffolded with short reads) and superior to other avian genomes (92%-93%; assembled with short read-only or hybrid methods). Compared to galGal4 and galGal5, the draft genome included 551 structural variations including the fibromelanosis (FM) locus duplication, related to hyperpigmentation. To comprehensively reconstruct transcriptome maps, RNA sequencing and reduced representation bisulfite sequencing data were analyzed from 20 tissues, including 4 black tissues (skin, shank, comb, and fascia). The maps included 15,766 protein-coding and 6,900 long noncoding RNA genes, many of which were tissue-specifically expressed and displayed tissue-specific DNA methylation patterns in the promoter regions.We expect that the resulting genome sequence and transcriptome maps will be valuable resources for studying domestic chicken breeds, including black-skinned chickens, as well as for understanding genomic differences between breeds and the evolution of hyperpigmented chickens and functional elements related to hyperpigmentation.


September 22, 2019  |  

Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance.

Resurrection plants, which are the “gifts” of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Sequencing of Panax notoginseng genome reveals genes involved in disease resistance and ginsenoside biosynthesis

Background: Panax notoginseng is a traditional Chinese herb with high medicinal and economic value. There has been considerable research on the pharmacological activities of ginsenosides contained in Panax spp.; however, very little is known about the ginsenoside biosynthetic pathway. Results: We reported the first de novo genome of 2.36 Gb of sequences from P. notoginseng with 35,451 protein-encoding genes. Compared to other plants, we found notable gene family contraction of disease-resistance genes in P. notoginseng, but notable expansion for several ATP-binding cassette (ABC) transporter subfamilies, such as the Gpdr subfamily, indicating that ABCs might be an additional mechanism for the plant to cope with biotic stress. Combining eight transcriptomes of roots and aerial parts, we identified several key genes, their transcription factor binding sites and all their family members involved in the synthesis pathway of ginsenosides in P. notoginseng, including dammarenediol synthase, CYP716 and UGT71. Conclusions: The complete genome analysis of P. notoginseng, the first in genus Panax, will serve as an important reference sequence for improving breeding and cultivation of this important nutraceutical and medicinal but vulnerable plant species.


September 22, 2019  |  

A reference genome of the Chinese hamster based on a hybrid assembly strategy.

Accurate and complete genome sequences are essential in biotechnology to facilitate genome-based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short-read-based assemblies. Here, we completely resequenced C. griseus using single molecule real time sequencing and merged this with Illumina-based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up- and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important Chinese hamster ovary cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.© 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.