Menu
September 22, 2019  |  

Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


September 22, 2019  |  

Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation

The genomic and metabolic features of Weissella koreensis, one of the major lactic acid bacteria in kimchi, were investigated through genomic, metabolic, and transcriptomic analyses for the genomes of strains KCTC 3621T, KACC 15510, and WiKim0080. W. koreensis strains were intrinsically vancomycin-resistant and harbored potential hemolysin genes that were actively transcribed although no hemolysin activity was detected. KEGG and reconstructed fermentative metabolic pathways displayed that W. koreensis strains commonly employ the heterolactic pathway to produce d-lactate, ethanol, acetate, CO2, d-sorbitol, thiamine, and folate from various carbohydrates including d-glucose, d-mannose, d-lactose, l-malate, d-xylose, l-arabinose, d-ribose, N-acetyl-glucosamine, and gluconate, and strains KCTC 3621T and WiKim0080 additionally have metabolic pathways of d-galacturonate and d-glucoronate. Phenotypic analyses showed that all strains did not ferment d-galactose, probably due to the lack of d-galactose transporting system, and strains KCTC 3621T and WiKim0080 fermented d-fructose, indicating the presence of d-fructose transporting system. Fermentative features of W. koreensis were investigated through kimchi transcriptional analysis, suggesting that W. koreensis is mainly responsible for kimchi fermentation with the production of various fermentative metabolites during late fermentation period. This was the first study to investigate the genomic and metabolic features of W. koreensis, which may provide better understandings on kimchi fermentation.


September 22, 2019  |  

Insights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses.

The family Acidiferrobacteraceae (order Acidiferrobacterales) currently contains Gram negative, neutrophilic sulfur oxidizers such as Sulfuricaulis and Sulfurifustis, as well as acidophilic iron and sulfur oxidizers belonging to the Acidiferrobacter genus. The diversity and taxonomy of the genus Acidiferrobacter has remained poorly explored. Although several metagenome and bioleaching studies have identified its presence worldwide, only two strains, namely Acidiferrobacter thiooxydans DSM 2932T, and Acidiferrobacter spp. SP3/III have been isolated and made publically available. Using 16S rRNA sequence data publically available for the Acidiferrobacteraceae, we herein shed light into the molecular taxonomy of this family. Results obtained support the presence of three clades Acidiferrobacter, Sulfuricaulis and Sulfurifustis. Genomic analyses of the genome sequences of A. thiooxydansT and Acidiferrobacter spp. SP3/III indicate that ANI relatedness between the SPIII/3 strain and A. thiooxydansT is below 95-96%, supporting the classification of strain SP3/III as a new species within this genus. In addition, approximately 70% of Acidiferrobacter sp. SPIII/3 predicted genes have a conserved ortholog in A. thiooxydans strains. A comparative analysis of iron, sulfur oxidation pathways, genome plasticity and cell-cell communication mechanisms of Acidiferrobacter spp. are also discussed. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.


September 22, 2019  |  

Complete genome sequence of Leuconostoc citreum EFEL2700, a host strain for transformation of pCB vectors.

Leuconostoc citreum is an important lactic acid bacterium used as a starter culture for producing kimchi, the traditional Korean fermented vegetables. An efficient host strain for plasmid transformation, L. citreum EFEL2700, was isolated from kimchi, and it has been frequently used for genetic engineering of L. citreum. In this study, we report the whole genome sequence of the strain and its genetic characteristics. Genome assembly yielded 5 contigs (1 chromosome and 4 plasmids), and the complete genome contained 1,923,830 base pairs (bp) with a G?+?C content of 39.0%. Average nucleotide identity analysis showed high homology (= 99%) to the reference strain L. citreum KM 20. The smallest plasmid (4.3 kbp) was used as an Escherichia coli shuttle vector (pCB) for heterologous gene expression, and L. citreum EFEL2700 showed the highest transformation efficiency, 6.7?×?104 CFU µg-1 DNA. Genetic analysis of the genome enabled the construction of primary metabolic pathway showing a typical hetero-type lactic acid fermentation. Notably, no core genes for primary metabolism were observed in plasmid 4 and it could be eliminated to create an efficient host for gene transformation. This report will facilitate the understanding and application of L. citreum EFEL2700 as a food-grade microbial cell factory.Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Whole-genome landscape of Medicago truncatula symbiotic genes.

Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.


September 22, 2019  |  

Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs.

The endosymbiotic bacterium Wolbachia pipientis has been shown to restrict a range of RNA viruses in Drosophila melanogaster and transinfected dengue mosquito, Aedes aegypti. Here, we show that Wolbachia infection enhances replication of Aedes albopictus densovirus (AalDNV-1), a single stranded DNA virus, in Aedes cell lines in a density-dependent manner. Analysis of previously produced small RNAs of Aag2 cells showed that Wolbachia-infected cells produced greater absolute abundance of virus-derived short interfering RNAs compared to uninfected cells. Additionally, we found production of virus-derived PIWI-like RNAs (vpiRNA) produced in response to AalDNV-1 infection. Nuclear fractions of Aag2 cells produced a primary vpiRNA signature U1 bias whereas the typical “ping-pong” signature (U1 – A10) was evident in vpiRNAs from the cytoplasmic fractions. This is the first report of the density-dependent enhancement of DNA viruses by Wolbachia. Further, we report the generation of vpiRNAs in a DNA virus-host interaction for the first time. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


September 22, 2019  |  

Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in Lindernia.

Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.© 2018 American Society of Plant Biologists. All rights reserved.


September 22, 2019  |  

The genomic landscape of molecular responses to natural drought stress in Panicum hallii

Environmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C4perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes. While gene expression networks are dominated by local cis-regulatory elements, we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs are four times more drought responsive than the genome-wide average. Additionally, cis- and trans-regulatory networks are more likely to have opposing effects than expected under neutral evolution, supporting a strong influence of compensatory evolution and stabilizing selection. These results implicate trans-regulatory evolution as a driver of drought responses and demonstrate the potential for crop improvement in drought-prone regions through modification of gene regulatory networks.


September 22, 2019  |  

Regulation of yeast-to-hyphae transition in Yarrowia lipolytica.

The yeast Yarrowia lipolytica undergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All the smooth mutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5′-CCCCT-3′) and upregulation of genes with cell cycle box (5′-ACGCG-3′) motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p in Saccharomyces cerevisiae We confirmed that the Y. lipolyticamsn2 (Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S. cerevisiae to regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of either Ylmbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second forward genetic screen for reversion to hyphal growth was performed with the smooth-33 mutant to identify additional genetic factors regulating hyphal growth in Y. lipolytica Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1 and Ylnik1 and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1 Together, these results demonstrate that Y. lipolytica transitions to hyphal growth in response to stress through multiple signaling pathways.IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response. Copyright © 2018 Pomraning et al.


September 22, 2019  |  

N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses.

N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

How resurrection plants survive being hung out to dry.

Resurrection plants have the unique ability to survive extreme dehydration (desiccation), lying dormant for months or sometimes years until rehydration is possible. This formidable survival strategy has independently evolved several times across the land plant phylogeny, and several phylogenetically diverse resurrection plant genomes have been sequenced and assembled in an attempt to understand the causal genetic mechanisms. Large-scale comparisons across each of these phylogenetically distant resurrection plant genomes reveals that some conserved molecular signatures may underlie desiccation tolerance (Illing et al., 2005; Zhang and Bartels, 2018), but overall the genes, networks, and regulatory factors that underlie desiccation tolerance remain largely unknown.


September 22, 2019  |  

Approaches for surveying cosmic radiation damage in large populations of Arabidopsis thaliana seeds-Antarctic balloons and particle beams.

The Cosmic Ray Exposure Sequencing Science (CRESS) payload system is a proof of concept experiment to assess the genomic impact of space radiation on seeds. CRESS was designed as a secondary payload for the December 2016 high-altitude, high-latitude, and long-duration balloon flight carrying the Boron And Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) experimental hardware. Investigation of the biological effects of Galactic Cosmic Radiation (GCR), particularly those of ions with High-Z and Energy (HZE), is of interest due to the genomic damage this type of radiation inflicts. The biological effects of upper-stratospheric mixed radiation above Antarctica (ANT) were sampled using Arabidopsis thaliana seeds and were compared to those resulting from a controlled simulation of GCR at Brookhaven National Laboratory (BNL) and to laboratory control seed. The payload developed for Antarctica exposure was broadly designed to 1U CubeSat specifications (10cmx10cmx10cm, =1.33kg), maintained 1 atm internal pressure, and carried an internal cargo of four seed trays (about 580,000 seeds) and twelve CR-39 Solid-State Nuclear Track Detectors (SSNTDs). The irradiated seeds were recovered, sterilized and grown on Petri plates for phenotypic screening. BNL and ANT M0 seeds showed significantly reduced germination rates and elevated somatic mutation rates when compared to non-irradiated controls, with the BNL mutation rate also being significantly higher than that of ANT. Genomic DNA from mutants of interest was evaluated with whole-genome sequencing using PacBio SMRT technology. Sequence data revealed the presence of an array of genome structural variants in the genomes of M0 and M1 mutant plants.


September 22, 2019  |  

Genomic and genetic insights into a cosmopolitan fungus, Paecilomyces variotii (Eurotiales).

Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.


September 22, 2019  |  

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.