Menu
July 19, 2019  |  

Genome reference and sequence variation in the large repetitive central exon of human MUC5AC.

Despite modern sequencing efforts, the difficulty in assembly of highly repetitive sequences has prevented resolution of human genome gaps, including some in the coding regions of genes with important biological functions. One such gene, MUC5AC, encodes a large, secreted mucin, which is one of the two major secreted mucins in human airways. The MUC5AC region contains a gap in the human genome reference (hg19) across the large, highly repetitive, and complex central exon. This exon is predicted to contain imperfect tandem repeat sequences and multiple conserved cysteine-rich (CysD) domains. To resolve the MUC5AC genomic gap, we used high-fidelity long PCR followed by single molecule real-time (SMRT) sequencing. This technology yielded long sequence reads and robust coverage that allowed for de novo sequence assembly spanning the entire repetitive region. Furthermore, we used SMRT sequencing of PCR amplicons covering the central exon to identify genetic variation in four individuals. The results demonstrated the presence of segmental duplications of CysD domains, insertions/deletions (indels) of tandem repeats, and single nucleotide variants. Additional studies demonstrated that one of the identified tandem repeat insertions is tagged by nonexonic single nucleotide polymorphisms. Taken together, these data illustrate the successful utility of SMRT sequencing long reads for de novo assembly of large repetitive sequences to fill the gaps in the human genome. Characterization of the MUC5AC gene and the sequence variation in the central exon will facilitate genetic and functional studies for this critical airway mucin.


July 19, 2019  |  

The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication.

The cultivation of rice in Africa dates back more than 3,000 years. Interestingly, African rice is not of the same origin as Asian rice (Oryza sativa L.) but rather is an entirely different species (i.e., Oryza glaberrima Steud.). Here we present a high-quality assembly and annotation of the O. glaberrima genome and detailed analyses of its evolutionary history of domestication and selection. Population genomics analyses of 20 O. glaberrima and 94 Oryza barthii accessions support the hypothesis that O. glaberrima was domesticated in a single region along the Niger river as opposed to noncentric domestication events across Africa. We detected evidence for artificial selection at a genome-wide scale, as well as with a set of O. glaberrima genes orthologous to O. sativa genes that are known to be associated with domestication, thus indicating convergent yet independent selection of a common set of genes during two geographically and culturally distinct domestication processes.


July 19, 2019  |  

Aluminum tolerance in maize is associated with higher MATE1 gene copy number.

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


July 19, 2019  |  

Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses.

No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2′-C-methylcytidine (2′-CMC), and interferon alpha 2a (IFN-a2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-a2a and 2′-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-a2a and 6-azaU was moderately synergistic. The combination of 2′-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2′-CMC, AHFV variants with reduced susceptibility to 2′-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2′-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2′-CMC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae.

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment. Copyright © 2014, American Association for the Advancement of Science.


July 19, 2019  |  

Technology: SMRT move?

One of the major challenges of de novo mammalian genome assembly arises from the presence of large, interspersed segmental duplications with high levels of sequence identity. These regions are particularly difficult to assemble using current short-read high-throughput sequencing methods. Combining long-read single-molecule, real-time (SMRT) sequencing with a hierarchical genome-assembly process (HGAP), as well as the consensus and variant caller Quiver, enabled these complex genomic regions to be resolved in a more cost-and time-effective manner than previously possible.


July 19, 2019  |  

The somatic genomic landscape of chromophobe renal cell carcinoma.

We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Reconstructing complex regions of genomes using long-read sequencing technology.

Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state.


July 19, 2019  |  

Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability.

Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into the instability of this region, we sequenced it in affected individuals, normal individuals and nonhuman primates. We discovered five structural configurations of the human chromosome 15q13.3 region ranging in size from 2 to 3 Mb. These configurations arose recently (~0.5-0.9 million years ago) as a result of human-specific expansions of segmental duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 core duplicons-a ~14-kb primate-specific chromosome 15 repeat that became organized into larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the human lineage and independent structural changes in apes. The significant clustering (P = 0.002) of breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic architecture in promoting the evolutionary and disease-related instability of chromosome 15.


July 19, 2019  |  

Vertical transmission of highly similar bla CTX-M-1-harboring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid.

The purpose of this study was to characterize sets of extended-spectrum ß-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter.Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis.Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that bla CTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively.The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks).


July 19, 2019  |  

The extant World War 1 dysentery bacillus NCTC1: a genomic analysis.

Shigellosis (previously bacillary dysentery) was the primary diarrhoeal disease of World War 1, but outbreaks still occur in military operations, and shigellosis causes hundreds of thousands of deaths per year in developing nations. We aimed to generate a high-quality reference genome of the historical Shigella flexneri isolate NCTC1 and to examine the isolate for resistance to antimicrobials.In this genomic analysis, we sequenced the oldest extant Shigella flexneri serotype 2a isolate using single-molecule real-time (SMRT) sequencing technology. Isolated from a soldier with dysentery from the British forces fighting on the Western Front in World War 1, this bacterium, NCTC1, was the first isolate accessioned into the National Collection of Type Cultures. We created a reference sequence for NCTC1, investigated the isolate for antimicrobial resistance, and undertook comparative genetics with S flexneri reference strains isolated during the 100 years since World War 1.We discovered that NCTC1 belonged to a 2a lineage of S flexneri, with which it shares common characteristics and a large core genome. NCTC1 was resistant to penicillin and erythromycin, and contained a complement of chromosomal antimicrobial resistance genes similar to that of more recent isolates. Genomic islands gained in the S flexneri 2a lineage over time were predominately associated with additional antimicrobial resistances, virulence, and serotype conversion.This S flexneri 2a lineage is a well adapted pathogen that has continued to respond to selective pressures. We have created a valuable historical benchmark for shigellae in the form of a high-quality reference sequence for a publicly available isolate.The Wellcome Trust. Copyright © 2014 Baker et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd. All rights reserved.


July 19, 2019  |  

Resolving the complexity of the human genome using single-molecule sequencing.

The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome–78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.


July 19, 2019  |  

Evolution of mosquito preference for humans linked to an odorant receptor.

Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, ‘forest’ form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.


July 19, 2019  |  

Single haplotype assembly of the human genome from a hydatidiform mole.

A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. © 2014 Steinberg et al.; Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

Conformation dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.

Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation specific antibodies. We used mutational scanning by cell-surface display to screen 1,341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single molecule real time gene sequencing was used to quantify enrichment of mutants, returning on average 26,000 high quality full-length reads for each screened population. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. Copyright © 2014. Published by Elsevier Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.