Menu
April 21, 2020  |  

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.

Complete and contiguous genome assemblies greatly improve the quality of subsequent systems-wide functional profiling studies and the ability to gain novel biological insights. While a de novo genome assembly of an isolated bacterial strain is in most cases straightforward, more informative data about co-existing bacteria as well as synergistic and antagonistic effects can be obtained from a direct analysis of microbial communities. However, the complexity of metagenomic samples represents a major challenge. While third generation sequencing technologies have been suggested to enable finished metagenome-assembled genomes, to our knowledge, the complete genome assembly of all dominant strains in a microbiome sample has not been demonstrated. Natural whey starter cultures (NWCs) are used in cheese production and represent low-complexity microbiomes. Previous studies of Swiss Gruyère and selected Italian hard cheeses, mostly based on amplicon metagenomics, concurred that three species generally pre-dominate: Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii.Two NWCs from Swiss Gruyère producers were subjected to whole metagenome shotgun sequencing using the Pacific Biosciences Sequel and Illumina MiSeq platforms. In addition, longer Oxford Nanopore Technologies MinION reads had to be generated for one to resolve repeat regions. Thereby, we achieved the complete assembly of all dominant bacterial genomes from these low-complexity NWCs, which was corroborated by a 16S rRNA amplicon survey. Moreover, two distinct L. helveticus strains were successfully co-assembled from the same sample. Besides bacterial chromosomes, we could also assemble several bacterial plasmids and phages and a corresponding prophage. Biologically relevant insights were uncovered by linking the plasmids and phages to their respective host genomes using DNA methylation motifs on the plasmids and by matching prokaryotic CRISPR spacers with the corresponding protospacers on the phages. These results could only be achieved by employing long-read sequencing data able to span intragenomic as well as intergenomic repeats.Here, we demonstrate the feasibility of complete de novo genome assembly of all dominant strains from low-complexity NWCs based on whole metagenomics shotgun sequencing data. This allowed to gain novel biological insights and is a fundamental basis for subsequent systems-wide omics analyses, functional profiling and phenotype to genotype analysis of specific microbial communities.


April 21, 2020  |  

Cichorium intybus L.?×?Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization

Intergeneric hybridization between industrial chicory (Cichorium intybus L.) and Cicerbita alpina Walbr. induces interspecific hybrids and haploid chicory plants after in vitro embryo rescue. The protocol yielded haploids in 5 out of 12 cultivars pollinated; altogether 18 haploids were regenerated from 2836 embryos, with a maximum efficiency of 1.96% haploids per cross. Obtained haploids were chromosome doubled with mitosis inhibitors trifluralin and oryzalin; exposure to 0.05 g L-1 oryzalin during one week was the most efficient treatment to regenerate doubled haploids. Inbreeding effects in vitro were limited, but the ploidy level affects morphology. Transcriptome sequencing revealed two unique copies of CENH3 in Cicerbita alpina Walbr. Comparison of CENH3.1 protein sequences of Cicerbita and Cichorium obtained through transcriptome and whole shotgun genome sequencing revealed two amino-acid substitutions at critical residues of the histone fold domain. These particular changes cause chromosome elimination and reduced centromere loading in several other species and might indicate a CENH3-dependent mechanism causing chromosome elimination of parental chromosomes during Cichorium?×?Cicerbita intergeneric hybridization. Our results provide insights in chromosome elimination and might increase the efficiency of haploid induction in Cichorium.


April 21, 2020  |  

A draft genome for Spatholobus suberectus.

Spatholobus suberectus Dunn (S. suberectus), which belongs to the Leguminosae, is an important medicinal plant in China. Owing to its long growth cycle and increased use in human medicine, wild resources of S. suberectus have decreased rapidly and may be on the verge of extinction. De novo assembly of the whole S. suberectus genome provides us a critical potential resource towards biosynthesis of the main bioactive components and seed development regulation mechanism of this plant. Utilizing several sequencing technologies such as Illumina HiSeq X Ten, single-molecule real-time sequencing, 10x Genomics, as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), we assembled a chromosome-scale genome about 798?Mb in size. In total, 748?Mb (93.73%) of the contig sequences were anchored onto nine chromosomes with the longest scaffold being 103.57?Mb. Further annotation analyses predicted 31,634 protein-coding genes, of which 93.9% have been functionally annotated. All data generated in this study is available in public databases.


April 21, 2020  |  

Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii.

Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream substrates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efficiency of gene transfer and genomic integration of entire biosynthetic pathways.We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cassettes (>?5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efficient generation of transconjugants using the Gram-positive origins of replication repL and repH. We also investigated the impact of DNA methylation on conjugation efficiency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfite conversion and PacBio sequencing to determine the DNA methylation profile of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confirmed by detecting enzyme proteotypic peptides and the formation of acetone and isopropanol by C. ljungdahlii cultures utilizing syngas as a carbon and energy source.The developed multi-gene delivery system offers a versatile tool to integrate and stably express large biosynthetic pathways in the industrial promising syngas-fermenting microorganism C. ljungdahlii. The simple transfer and stable integration of large gene clusters (like entire biosynthetic pathways) is expanding the range of possible fermentation products of heterologously expressing recombinant strains. We also believe that the developed gene delivery system can be adapted to other clostridial strains as well.


April 21, 2020  |  

Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight.

The human genome contains “dark” gene regions that cannot be adequately assembled or aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations within these gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read or linked-read technologies resolve these regions.Based on standard whole-genome Illumina sequencing data, we identify 36,794 dark regions in 6054 gene bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are completely dark and 35.2% are =?5% dark. We identify dark regions that are present in protein-coding exons across 748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present an algorithm to resolve most camouflaged regions and apply it to the Alzheimer’s Disease Sequencing Project. We rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer’s disease gene, found in disease cases but not in controls.While we could not formally assess the association of the CR1 frameshift mutation with Alzheimer’s disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-read technologies.


April 21, 2020  |  

Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses.

Geminiviruses cause damaging diseases in several important crop species. However, limited progress has been made in developing crop varieties resistant to these highly diverse DNA viruses. Recently, the bacterial CRISPR/Cas9 system has been transferred to plants to target and confer immunity to geminiviruses. In this study, we use CRISPR-Cas9 interference in the staple food crop cassava with the aim of engineering resistance to African cassava mosaic virus, a member of a widespread and important family (Geminiviridae) of plant-pathogenic DNA viruses.Our results show that the CRISPR system fails to confer effective resistance to the virus during glasshouse inoculations. Further, we find that between 33 and 48% of edited virus genomes evolve a conserved single-nucleotide mutation that confers resistance to CRISPR-Cas9 cleavage. We also find that in the model plant Nicotiana benthamiana the replication of the novel, mutant virus is dependent on the presence of the wild-type virus.Our study highlights the risks associated with CRISPR-Cas9 virus immunity in eukaryotes given that the mutagenic nature of the system generates viral escapes in a short time period. Our in-depth analysis of virus populations also represents a template for future studies analyzing virus escape from anti-viral CRISPR transgenics. This is especially important for informing regulation of such actively mutagenic applications of CRISPR-Cas9 technology in agriculture.


April 21, 2020  |  

Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids.

Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids.We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations.Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.