Menu
September 22, 2019  |  

Lack of thinning effects over inter-annual changes in soil fungal community and diversity in a Mediterranean pine forest

Predicted changes in global climate might negatively affect the soil microbiome and associated ecosystem processes in Mediterranean forests. Forest treatments, such as forest thinning, have been suggested to mitigate climate change impacts on vegetation by reducing competition between trees, thus increasing water availability. Studies addressing the combined effects of climate and forest thinning on belowground fungal communities are still scarce, being fundamental to elaborate adaptive strategies to global warming. The aim of this study was to evaluate the tree density reduction effects on soil fungal communities and their response to inter-annual changes in weather conditions. The temporal dynamics of soil fungal communities in relation to these two drivers (i.e., forest management and weather conditions) were studied from 2009 until 2014 in a set of 12 pairs of thinned and un-thinned plots dominated by Pinus pinaster Ait. Thinning (from 30% up to 70% reduction in stand basal area) was conducted in 2009 and soil fungal community composition was studied during 4?years. Here, we used autumn precipitation and temperature to describe the impact of inter-annual weather changes. We used Pacific Biosciences sequencing of fungal ITS2 amplicons to study fungal communities in soil samples. Forest thinning did not significantly affect fungal community composition nor fungal species richness and diversity, indicating that the soil fungal community is resistant to forest thinning regardless of its intensity. However, fungal species composition changed progressively across years, both at the species level and with regards to functional guilds. These changes in community composition were partly driven by inter-annual variation in precipitation and temperature, with free-living fungi increasing in abundance under wetter conditions, and symbiotic fungi being more prominent under drier and colder conditions. The results indicate that mycorrhizal communities in Mediterranean forest ecosystems can resist forest thinning, if enough trees and functional roots from thinned trees are retained.


September 22, 2019  |  

Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community.

The oral cavity harbours a complex microbiome that is linked to dental diseases and serves as a route to other parts of the body. Here, the aims were to characterize the oral microbiota by deep sequencing in a low-caries population with regular dental care since childhood and search for association with caries prevalence and incidence. Saliva and tooth biofilm from 17-year-olds and mock bacteria communities were analysed using 16S rDNA Illumina MiSeq (v3-v4) and PacBio SMRT (v1-v8) sequencing including validity and reliability estimates. Caries was scored at 17 and 19 years of age. Both sequencing platforms revealed that Firmicutes dominated in the saliva, whereas Firmicutes and Actinobacteria abundances were similar in tooth biofilm. Saliva microbiota discriminated caries-affected from caries-free adolescents, with enumeration of Scardovia wiggsiae, Streptococcus mutans, Bifidobacterium longum, Leptotrichia sp. HOT498, and Selenomonas spp. in caries-affected participants. Adolescents with B. longum in saliva had significantly higher 2-year caries increment. PacBio SMRT revealed Corynebacterium matruchotii as the most prevalent species in tooth biofilm. In conclusion, both sequencing methods were reliable and valid for oral samples, and saliva microbiota was associated with cross-sectional caries prevalence, especially S. wiggsiae, S. mutans, and B. longum; the latter also with the 2-year caries incidence.


September 22, 2019  |  

Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26.

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G?>?A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome. © The Author 2017. Published by Oxford University Press.


September 22, 2019  |  

Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits.

Diversity of microbial organisms is linked to global climatic gradients. The genus Phytophthora includes both aquatic and terrestrial plant pathogenic species that display a large variation of functional traits. The extent to which the physical environment (water or soil) modulates the interaction of microorganisms with climate is unknown. Here, we explored the main environmental drivers of diversity and functional trait composition of Phytophthora communities. Communities were obtained by a novel metabarcoding setup based on PacBio sequencing of river filtrates in 96 river sites along a geographical gradient. Species were classified as terrestrial or aquatic based on their phylogenetic clade. Overall, terrestrial and aquatic species showed contrasting patterns of diversity. For terrestrial species, precipitation was a stronger driver than temperature, and diversity and functional diversity decreased with decreasing temperature and precipitation. In cold and dry areas, the dominant species formed resistant structures and had a low optimum temperature. By contrast, for aquatic species, temperature and water chemistry were the strongest drivers, and diversity increased with decreasing temperature and precipitation. Within the same area, environmental filtering affected terrestrial species more strongly than aquatic species (20% versus 3% of the studied communities, respectively). Our results highlight the importance of functional traits and the physical environment in which microorganisms develop their life cycle when predicting their distribution under changing climatic conditions. Temperature and rainfall may be buffered differently by water and soil, and thus pose contrasting constrains to microbial assemblies.


September 22, 2019  |  

Long-read sequencing revealed an extensive transcript complexity in herpesviruses.

Long-read sequencing (LRS) techniques are very recent advancements, but they have already been used for transcriptome research in all of the three subfamilies of herpesviruses. These techniques have multiplied the number of known transcripts in each of the examined viruses. Meanwhile, they have revealed a so far hidden complexity of the herpesvirus transcriptome with the discovery of a large number of novel RNA molecules, including coding and non-coding RNAs, as well as transcript isoforms, and polycistronic RNAs. Additionally, LRS techniques have uncovered an intricate meshwork of transcriptional overlaps between adjacent and distally located genes. Here, we review the contribution of LRS to herpesvirus transcriptomics and present the complexity revealed by this technology, while also discussing the functional significance of this phenomenon.


September 22, 2019  |  

Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies.

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P. abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.


September 22, 2019  |  

Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder.

Ankyrin-3 (ANK3) is one of the few genes that have been consistently identified as associated with bipolar disorder by multiple genome-wide association studies. However, the exact molecular basis of the association remains unknown. A rare loss-of-function splice-site SNP (rs41283526*G) in a minor isoform of ANK3 (incorporating exon ENSE00001786716) was recently identified as protective of bipolar disorder and schizophrenia. This suggests that an elevated expression of this isoform may be involved in the etiology of the disorders. In this study, we used novel approaches and data sets to test this hypothesis. First, we strengthen the statistical evidence supporting the allelic association by replicating the protective effect of the minor allele of rs41283526 in three additional large independent samples (meta-analysis p-values: 6.8E-05 for bipolar disorder and 8.2E-04 for schizophrenia). Second, we confirm the hypothesis that both bipolar and schizophrenia patients have a significantly higher expression of this isoform than controls (p-values: 3.3E-05 for schizophrenia and 9.8E-04 for bipolar type I). Third, we determine the transcription start site for this minor isoform by Pacific Biosciences sequencing of full-length cDNA and show that it is primarily expressed in the corpus callosum. Finally, we combine genotype and expression data from a large Norwegian sample of psychiatric patients and controls, and show that the risk alleles in ANK3 identified by bipolar disorder GWAS are located near the transcription start site of this isoform and are significantly associated with its elevated expression. Together, these results point to the likely molecular mechanism underlying ANK3´s association with bipolar disorder.


September 22, 2019  |  

Single-molecule DNA sequencing of acute myeloid leukemia and myelodysplastic syndromes with multiple TP53 alterations.

Although the frequency of TP53 mutations in hemato- logic malignancies is low, these mutations have a high clinical relevance and are usually associated with poor prognosis. Somatic TP53 mutations have been detected in up to 73.3% of cases of acute myeloid leukemia (AML) with complex karyotype and 18.9% of AML with other unfavorable cytogenetic risk factors. AML with TP53 mutations, and/or chromosomal aneuploidy, has been defined as a distinct AML subtype. In low-risk myelodysplastic syndromes (MDS), TP53 mutations occur at an early disease stage and predict disease progression. TP53 mutation diagnosis is now part of the revised European LeukemiaNet (ELN) guidelines.


September 22, 2019  |  

Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity.

Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation.


September 22, 2019  |  

Meeting report: processing, translation, decay – three ways to keep RNA sizzling.

This meeting report highlights key trends that emerged from a conference entitled Post-Transcriptional Gene Regulation in Plants, which was held 14-15 July 2016, as a satellite meeting of the annual meeting of the American Society of Plant Biologists in Austin, Texas. The molecular biology of RNA is emerging as an integral part of the framework for plants’ responses to environmental challenges such as drought and heat, hypoxia, nutrient deprivation, light and pathogens. Moreover, the conference illustrated how a multitude of customized and pioneering omics-related technologies are being applied, more and more often in combination, to describe and dissect the complexities of gene expression at the post-transcriptional level.© 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

Discovery of the fourth mobile sulfonamide resistance gene.

Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context.Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (>?1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe.Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.


September 22, 2019  |  

Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection.

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ~75% of the genus-level bacterial and archaeal taxa present in the rumen.


September 22, 2019  |  

Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands.

Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.


September 22, 2019  |  

Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb.

Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.