X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Genome sequencing and comparative analysis of Stenotrophomonas acidaminiphila reveal evolutionary insights into sulfamethoxazole resistance.

Stenotrophomonas acidaminiphila is an aerobic, glucose non-fermentative, Gram-negative bacterium that been isolated from various environmental sources, particularly aquatic ecosystems. Although resistance to multiple antimicrobial agents has been reported in S. acidaminiphila, the mechanisms are largely unknown. Here, for the first time, we report the complete genome and antimicrobial resistome analysis of a clinical isolate S. acidaminiphila SUNEO which is resistant to sulfamethoxazole. Comparative analysis among closely related strains identified common and strain-specific genes. In particular, comparison with a sulfamethoxazole-sensitive strain identified a mutation within the sulfonamide-binding site of folP in SUNEO, which may reduce the binding affinity of sulfamethoxazole. Selection…

Read More »

Sunday, September 22, 2019

Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.

An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum…

Read More »

Sunday, September 22, 2019

Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae.

The rapid increase in carbapenem resistance among gram-negative bacteria has renewed focus on the importance of polymyxin antibiotics (colistin or polymyxin E). However, the recent emergence of plasmid-mediated colistin resistance determinants (mcr-1, -2, -3, -4, -5, -6, and -7), especially mcr-1, in carbapenem-resistant Enterobacteriaceae is a serious threat to global health. Here, we characterized a novel mobile colistin resistance gene, mcr-8, located on a transferrable 95,983-bp IncFII-type plasmid in Klebsiella pneumoniae. The deduced amino-acid sequence of MCR-8 showed 31.08%, 30.26%, 39.96%, 37.85%, 33.51%, 30.43%, and 37.46% identity to MCR-1, MCR-2, MCR-3, MCR-4, MCR-5, MCR-6, and MCR-7, respectively. Functional cloning indicated…

Read More »

Sunday, September 22, 2019

A mosaic monoploid reference sequence for the highly complex genome of sugarcane.

Sugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence. We exploited colinearity with sorghum to produce a BAC-based monoploid genome sequence of sugarcane. A minimum tiling path of 4660 sugarcane BAC that best covers the gene-rich part of the sorghum genome was selected based on whole-genome profiling, sequenced, and assembled in a 382-Mb single tiling path of a high-quality sequence. A total of 25,316 protein-coding gene models are predicted, 17% of which display no colinearity with their sorghum orthologs. We show…

Read More »

Sunday, September 22, 2019

Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description.

Xanthomonas fragariae is a quarantine organism in Europe, causing angular leaf spots on strawberry plants. It is spreading worldwide in strawberry-producing regions due to import of plant material through trade and human activities. In order to resolve the population structure at the strain level, we have employed high-resolution molecular typing tools on a comprehensive strain collection representing global and temporal distribution of the pathogen. Clustered regularly interspaced short palindromic repeat regions (CRISPRs) and variable number of tandem repeats (VNTRs) were identified within the reference genome of X. fragariae LMG 25863 as a potential source of variation. Strains from our collection…

Read More »

Sunday, September 22, 2019

Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans.

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other…

Read More »

Sunday, September 22, 2019

Fusarium species complex causing Pokkah Boeng in China

Sugarcane is one of the most important crops for sugar production in sugarcane-growing areas. Many biotic and abiotic stresses affected the sugarcane production which leads to severe losses. Pokkah boeng is now playing a very important role due to its economic threats. Currently, the occurrence and rigorousness of pokkah boeng disease have been spread like wildfire from major sugarcane-growing countries. Pokkah boeng is a fungal disease that can cause serious yield losses in susceptible varieties. Infection of the disease is caused either by spores or ascospores. It may cause serious yield losses in commercial plantings. However, there have been many…

Read More »

Sunday, September 22, 2019

The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination.

Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as ‘fossilized’. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the…

Read More »

Sunday, September 22, 2019

A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species.

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta,…

Read More »

Sunday, September 22, 2019

Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans.

The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans’ motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins…

Read More »

Sunday, September 22, 2019

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny,…

Read More »

Sunday, September 22, 2019

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.

Read More »

Sunday, September 22, 2019

The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics.

Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2?Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions…

Read More »

Sunday, September 22, 2019

Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications.

Modern genotyping techniques, such as SNP analysis and genotyping by sequencing (GBS), are hampered by poor DNA quality and purity, particularly in challenging plant species, rich in secondary metabolites. We therefore investigated the utility of a pre-wash step using a buffered sorbitol solution, prior to DNA extraction using a high salt CTAB extraction protocol, in a high throughput or miniprep setting. This pre-wash appears to remove interfering metabolites, such as polyphenols and polysaccharides, from tissue macerates. We also investigated the adaptability of the sorbitol pre-wash for RNA extraction using a lithium chloride-based protocol. The method was successfully applied to a…

Read More »

Sunday, September 22, 2019

Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots.

A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives