Menu
September 22, 2019  |  

Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.

An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55°C, compared to pH 7.0 at 60°C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass. Copyright © 2018 Elsevier GmbH. All rights reserved.


September 22, 2019  |  

Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae.

The rapid increase in carbapenem resistance among gram-negative bacteria has renewed focus on the importance of polymyxin antibiotics (colistin or polymyxin E). However, the recent emergence of plasmid-mediated colistin resistance determinants (mcr-1, -2, -3, -4, -5, -6, and -7), especially mcr-1, in carbapenem-resistant Enterobacteriaceae is a serious threat to global health. Here, we characterized a novel mobile colistin resistance gene, mcr-8, located on a transferrable 95,983-bp IncFII-type plasmid in Klebsiella pneumoniae. The deduced amino-acid sequence of MCR-8 showed 31.08%, 30.26%, 39.96%, 37.85%, 33.51%, 30.43%, and 37.46% identity to MCR-1, MCR-2, MCR-3, MCR-4, MCR-5, MCR-6, and MCR-7, respectively. Functional cloning indicated that the acquisition of the single mcr-8 gene significantly increased resistance to colistin in both Escherichia coli and K. pneumoniae. Notably, the coexistence of mcr-8 and the carbapenemase-encoding gene blaNDM was confirmed in K. pneumoniae isolates of livestock origin. Moreover, BLASTn analysis of mcr-8 revealed that this gene was present in a colistin- and carbapenem-resistant K. pneumoniae strain isolated from the sputum of a patient with pneumonia syndrome in the respiratory intensive care unit of a Chinese hospital in 2016. These findings indicated that mcr-8 has existed for some time and has disseminated among K. pneumoniae of both animal and human origin, further increasing the public health burden of antimicrobial resistance.


September 22, 2019  |  

A mosaic monoploid reference sequence for the highly complex genome of sugarcane.

Sugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence. We exploited colinearity with sorghum to produce a BAC-based monoploid genome sequence of sugarcane. A minimum tiling path of 4660 sugarcane BAC that best covers the gene-rich part of the sorghum genome was selected based on whole-genome profiling, sequenced, and assembled in a 382-Mb single tiling path of a high-quality sequence. A total of 25,316 protein-coding gene models are predicted, 17% of which display no colinearity with their sorghum orthologs. We show that the two species, S. officinarum and S. spontaneum, involved in modern cultivars differ by their transposable elements and by a few large chromosomal rearrangements, explaining their distinct genome size and distinct basic chromosome numbers while also suggesting that polyploidization arose in both lineages after their divergence.


September 22, 2019  |  

Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description.

Xanthomonas fragariae is a quarantine organism in Europe, causing angular leaf spots on strawberry plants. It is spreading worldwide in strawberry-producing regions due to import of plant material through trade and human activities. In order to resolve the population structure at the strain level, we have employed high-resolution molecular typing tools on a comprehensive strain collection representing global and temporal distribution of the pathogen. Clustered regularly interspaced short palindromic repeat regions (CRISPRs) and variable number of tandem repeats (VNTRs) were identified within the reference genome of X. fragariae LMG 25863 as a potential source of variation. Strains from our collection were whole-genome sequenced and used in order to identify variable spacers and repeats for discriminative purpose. CRISPR spacer analysis and multiple-locus VNTR analysis (MLVA) displayed a congruent population structure, in which two major groups and a total of four subgroups were revealed. The two main groups were genetically separated before the first X. fragariae isolate was described and are potentially responsible for the worldwide expansion of the bacterial disease. Three primer sets were designed for discriminating CRISPR-associated markers in order to streamline group determination of novel isolates. Overall, this study describes typing methods to discriminate strains and monitor the pathogen population structure, more especially in the view of a new outbreak of the pathogen.


September 22, 2019  |  

Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans.

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.


September 22, 2019  |  

Fusarium species complex causing Pokkah Boeng in China

Sugarcane is one of the most important crops for sugar production in sugarcane-growing areas. Many biotic and abiotic stresses affected the sugarcane production which leads to severe losses. Pokkah boeng is now playing a very important role due to its economic threats. Currently, the occurrence and rigorousness of pokkah boeng disease have been spread like wildfire from major sugarcane-growing countries. Pokkah boeng is a fungal disease that can cause serious yield losses in susceptible varieties. Infection of the disease is caused either by spores or ascospores. It may cause serious yield losses in commercial plantings. However, there have been many reported outbreaks of the disease which have looked spectacular but have caused trade and industry loss. Fusarium species complex is the major causal agent of this disease around the world, but some researchers have documented the increased importance of Fusarium. Three Fusarium species have been identified to cause the sugarcane pokkah boeng disease in China. Moreover, Fusarium may be accompanied of its mycotoxin production, genomic sequencing, and association with nitrogen application in China. Many studies on disease investigations, breeding of disease-resistant varieties, and strategy of disease control have also been carried out in China.


September 22, 2019  |  

The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination.

Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as ‘fossilized’. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms.Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome.The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.


September 22, 2019  |  

A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species.

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta, two related Malpighiales species with available fully sequenced genomes were examined. Overall, gene order was well conserved, with some disruptions of collinearity identified as rearrangements, such as inversion and translocation events. The microsynteny level observed between the P. edulis sequences and the compared genomes is surprising, given the long divergence time that separates them from the common ancestor. P. edulis gene-rich segments are more compact than those of the other two species, even though its genome is much larger. This study provides a first accurate gene set for P. edulis, opening the way for new studies on the evolutionary issues in Malpighiales genomes.


September 22, 2019  |  

Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans.

The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans’ motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins ejected via T6SSs. We found a large plasmid in K. radicincitans DSM 16656T, the species type strain, that confers the potential to exploit plant-derived carbon sources. We propose that multiple copies of complex gene clusters in K. radicincitans are metabolically expensive but provide competitive advantage over other bacterial strains in nutrient-rich environments. The comparison of the DSM 16656T genome to genomes of other genera of enteric plant growth-promoting bacteria (PGPB) exhibits traits unique to DSM 16656T and K. radicincitans, respectively, and traits shared between genera. We used the output of the in silico analysis for predicting the purpose of genomic features unique to K. radicincitans and performed microarray, PhyloChip, and microscopical analyses to gain deeper insight into the interaction of DSM 16656T, plants and associated microbiota. The comparative genome analysis will facilitate the future search for promising candidates of PGPB for sustainable crop production.


September 22, 2019  |  

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


September 22, 2019  |  

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.


September 22, 2019  |  

The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics.

Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2?Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.


September 22, 2019  |  

Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications.

Modern genotyping techniques, such as SNP analysis and genotyping by sequencing (GBS), are hampered by poor DNA quality and purity, particularly in challenging plant species, rich in secondary metabolites. We therefore investigated the utility of a pre-wash step using a buffered sorbitol solution, prior to DNA extraction using a high salt CTAB extraction protocol, in a high throughput or miniprep setting. This pre-wash appears to remove interfering metabolites, such as polyphenols and polysaccharides, from tissue macerates. We also investigated the adaptability of the sorbitol pre-wash for RNA extraction using a lithium chloride-based protocol. The method was successfully applied to a variety of tissues, including leaf, cambium and fruit of diverse plant species including annual crops, forest and fruit trees, herbarium leaf material and lyophilized fungal mycelium. We consistently obtained good yields of high purity DNA or RNA in all species tested. The protocol has been validated for thousands of DNA samples by generating high data quality in dense SNP arrays. DNA extracted from Eucalyptus spp. leaf and cambium as well as mycelium from Trichoderma spp. was readily digested with restriction enzymes and performed consistently in AFLP assays. Scaled-up DNA extractions were also suitable for long read sequencing. Successful RNA quality control and good RNA-Seq data for Eucalyptus and cashew confirms the effectiveness of the sorbitol buffer pre-wash for high quality RNA extraction.


September 22, 2019  |  

Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots.

A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.