X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated at the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light-HL versus low light -LL) enabled…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of marine Bacillus sp. Y-01, isolated from the plastics contamination in the Yellow Sea

Plastics contamination in the environment has been an increasing ecological problem. Here we present the complete genome sequence of Bacillus sp. Y-01, isolated from plastic contamination samples in the Yellow Sea, which can utilize the polypropylene as the sole carbon and energy source. The strain has one circular chromosome of 5,130,901?bp in 8 contigs with a 38.24% GC content, consisting of 4996 protein-coding genes, 118 tRNA genes, as well as 40 rRNA operons as 5S-16S-23S rRNA. The complete genome sequence of Bacillus sp. Y-01 will provide useful genetic information to further detect the molecular mechanisms behind marine microplastics degradation.

Read More »

Tuesday, April 21, 2020

Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology.

In present study, single molecule-real time sequencing technology was used to obtain a validated set of microsatellite markers for application in population genetics of the primitive fish, Chitala chitala. Assembly of circular consensus sequencing reads resulted into 1164 sequences which contained 2005 repetitive motifs. A total of 100 sequences were used for primer designing and amplification yielded a set of 28 validated polymorphic markers. These loci were used to genotype n?=?72 samples from three distant riverine populations of India, namely Son, Satluj and Brahmaputra, for determining intraspecific genetic variation. The microsatellite loci exhibited high level of polymorphism with PIC values…

Read More »

Tuesday, April 21, 2020

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape…

Read More »

Tuesday, April 21, 2020

PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions.

Cheese is a fermented dairy product that is popular for its unique flavor and nutritional value. Recent studies have shown that microorganisms in cheese play an important role in the fermentation process and determine the quality of the cheese. We collected 12 cheese samples from different regions and studied the composition of their bacterial communities using PacBio small-molecule real-time sequencing (Pacific Biosciences, Menlo Park, CA). Our data revealed 144 bacterial genera (including Lactobacillus, Streptococcus, Lactococcus, and Staphylococcus) and 217 bacterial species (including Lactococcus lactis, Streptococcus thermophilus, Staphylococcus equorum, and Streptococcus uberis). We investigated the flavor quality of the cheese samples…

Read More »

Tuesday, April 21, 2020

Petunia-and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation

Phosphorus (P) is a limiting element for plant growth. Several root microbes, including arbuscular mycorrhizal fungi (AMF), have the capacity to improve plant nutrition and their abundance is known to depend on P fertility. However, how complex root-associated bacterial and fungal communities respond to various levels of P supplementation remains ill-defined. Here we investigated the responses of the root-associated bacteria and fungi to varying levels of P supply using 16S rRNA gene and internal transcribed spacer amplicon sequencing. We grew Petunia, which forms symbiosis with AMF, and the nonmycorrhizal model species Arabidopsis as a control in a soil that is…

Read More »

Tuesday, April 21, 2020

SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica).

The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica).As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label…

Read More »

Tuesday, April 21, 2020

Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant

Verticillium wilt is a devastating disease in eggplants. In order to understand the molecular mechanism of disease resistance in eggplants, transcriptomes of Verticillium wilt infected eggplants were detected. A total of 480, 518, 887 and 1 046 Verticillium wilt related differentially expressed genes were identified at 6 (V6), 12 (V12), 24 (V24) and 48?h (V48), respectively. COG function classification revealed that most of DEGs functioned in “Amino acid transport and metabolism”, “Cytoskeleton” and “Cell motility”. In addition, compared the control plants (V0) to infected eggplants (V6-V48), a total of 111 common DEGs were identified. Except for “General function prediction only”,…

Read More »

Tuesday, April 21, 2020

5’UTR-mediated regulation of Ataxin-1 expression.

Expression of mutant Ataxin-1 with an abnormally expanded polyglutamine domain is necessary for the onset and progression of spinocerebellar ataxia type 1 (SCA1). Understanding how Ataxin-1 expression is regulated in the human brain could inspire novel molecular therapies for this fatal, dominantly inherited neurodegenerative disease. Previous studies have shown that the ATXN1 3’UTR plays a key role in regulating the Ataxin-1 cellular pool via diverse post-transcriptional mechanisms. Here we show that elements within the ATXN1 5’UTR also participate in the regulation of Ataxin-1 expression. PCR and PacBio sequencing analysis of cDNA obtained from control and SCA1 human brain samples revealed…

Read More »

Tuesday, April 21, 2020

Improvement of the Pacific bluefin tuna (Thunnus orientalis) reference genome and development of male-specific DNA markers.

The Pacific bluefin tuna, Thunnus orientalis, is a highly migratory species that is widely distributed in the North Pacific Ocean. Like other marine species, T. orientalis has no external sexual dimorphism; thus, identifying sex-specific variants from whole genome sequence data is a useful approach to develop an effective sex identification method. Here, we report an improved draft genome of T. orientalis and male-specific DNA markers. Combining PacBio long reads and Illumina short reads sufficiently improved genome assembly, with a 38-fold increase in scaffold contiguity (to 444 scaffolds) compared to the first published draft genome. Through analysing re-sequence data of 15…

Read More »

Tuesday, April 21, 2020

The Single-molecule long-read sequencing of Scylla paramamosain.

Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional value. To the best of our knowledge, few full-length crab transcriptomes are available. In this study, a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 79005 high-quality unique transcripts were obtained after error correction and sequence clustering and redundant. Additionally, a total of 52544 transcripts were annotated against…

Read More »

Tuesday, April 21, 2020

Genome-wide systematic identification of methyltransferase recognition and modification patterns.

Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23…

Read More »

Tuesday, April 21, 2020

Extensive intraspecific gene order and gene structural variations in upland cotton cultivars.

Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of…

Read More »

1 2

Subscribe for blog updates:

Archives