Menu
June 1, 2021  |  

The value of long read amplicon sequencing for clinical applications

NGS is commonly used for amplicon sequencing in clinical applications to study genetic disorders and detect disease-causing mutations. This approach can be plagued by limited ability to phase sequence variants and makes interpretation of sequence data difficult when pseudogenes are present. Long-read highly accurate amplicon sequencing can provide very accurate, efficient, high throughput (through multiplexing) sequences from single molecules, with read lengths largely limited by PCR. Data is easy to interpret; phased variants and breakpoints are present within high fidelity individual reads. Here we show SMRT Sequencing of the PMS2 and OPN1 (MW and LW) genes using the Sequel System. Homologous regions make NGS and MLPA results very difficult to interpret.


June 1, 2021  |  

TLA & long-read sequencing: Efficient targeted sequencing and phasing of the CFTR gene

Background: The sequencing and haplotype phasing of entire gene sequences improves the understanding of the genetic basis of disease and drug response. One example is cystic fibrosis (CF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies have revolutionized CF treatment, but only in a minority of CF subjects. Observed heterogeneity in CFTR modulator efficacy is related to the range of CFTR mutations; revertant mutations can modify the response to CFTR modulators, and other intronic variations in the ~200 kb CFTR gene have been linked to disease severity. Heterogeneity in the CFTR gene may also be linked to differential responses to CFTR modulators. The Targeted Locus Amplification (TLA) technology from Cergentis can be used to selectively amplify, sequence and phase the entire CFTR gene. With PacBio long-read SMRT Sequencing, TLA amplicons are sequenced intact and long-range phasing information of all fragments in entire amplicons is retrieved. Experimental Design and Methods: The TLA process produces amplicons consisting of 5-10 proximity ligated DNA fragments. TLA was performed on cell line and genomic DNA from Coriell GM12878, which has few heterozygous SNVs in CFTR, and the IB3 cell line, with known haplotypes but heterozygous for the delta508 mutation. All sample types were prepared with high and low density TLA primer sets, targeting coverage of >100 kb of the CFTR gene. Conclusion: We have demonstrated the power and utility of TLA with long-read SMRT Sequencing as a valuable research tool in sequencing and phasing across very long regions of the human genome. This process can be done in an efficient manner, multiplexing multiple genes and samples per SMRT Cell in a process amenable to high-throughput sequencing.


October 23, 2019  |  

Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis.

The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource.To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ~81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis.Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.


September 22, 2019  |  

PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives.

Second-generation, high-throughput sequencing methods have greatly improved our understanding of the ecology of soil microorganisms, yet the short barcodes (< 500 bp) provide limited taxonomic and phylogenetic information for species discrimination and taxonomic assignment. Here, we utilized the third-generation Pacific Biosciences (PacBio) RSII and Sequel instruments to evaluate the suitability of full-length internal transcribed spacer (ITS) barcodes and longer rRNA gene amplicons for metabarcoding Fungi, Oomycetes and other eukaryotes in soil samples. Metabarcoding revealed multiple errors and biases: Taq polymerase substitution errors and mis-incorporating indels in sequencing homopolymers constitute major errors; sequence length biases occur during PCR, library preparation, loading to the sequencing instrument and quality filtering; primer-template mismatches bias the taxonomic profile when using regular and highly degenerate primers. The RSII and Sequel platforms enable the sequencing of amplicons up to 3000 bp, but the sequence quality remains slightly inferior to Illumina sequencing especially in longer amplicons. The full ITS barcode and flanking rRNA small subunit gene greatly improve taxonomic identification at the species and phylum levels, respectively. We conclude that PacBio sequencing provides a viable alternative for metabarcoding of organisms that are of relatively low diversity, require > 500-bp barcode for reliable identification or when phylogenetic approaches are intended.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


September 22, 2019  |  

The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera).

Caddisflies (Insecta: Trichoptera) are a highly adapted freshwater group of insects split from a common ancestor with Lepidoptera. They are the most diverse (>16,000 species) of the strictly aquatic insect orders and are widely employed as bio-indicators in water quality assessment and monitoring. Among the numerous adaptations to aquatic habitats, caddisfly larvae use silk and materials from the environment (e.g., stones, sticks, leaf matter) to build composite structures such as fixed retreats and portable cases. Understanding how caddisflies have adapted to aquatic habitats will help explain the evolution and subsequent diversification of the group.We sequenced a retreat-builder caddisfly Stenopsyche tienmushanensis Hwang and assembled a high-quality genome from both Illumina and Pacific Biosciences (PacBio) sequencing. In total, 601.2 M Illumina reads (90.2 Gb) and 16.9 M PacBio subreads (89.0 Gb) were generated. The 451.5 Mb assembled genome has a contig N50 of 1.29 M, has a longest contig of 4.76 Mb, and covers 97.65% of the 1,658 insect single-copy genes as assessed by Benchmarking Universal Single-Copy Orthologs. The genome comprises 36.76% repetitive elements. A total of 14,672 predicted protein-coding genes were identified. The genome revealed gene expansions in specific groups of the cytochrome P450 family and olfactory binding proteins, suggesting potential genomic features associated with pollutant tolerance and mate finding. In addition, the complete gene complex of the highly repetitive H-fibroin, the major protein component of caddisfly larval silk, was assembled.We report the draft genome of Stenopsyche tienmushanensis, the highest-quality caddisfly genome so far. The genome information will be an important resource for the study of caddisflies and may shed light on the evolution of aquatic insects.


September 22, 2019  |  

Increasing sorghum yields by seed treatment with an aqueous extract of the plant Eclipta alba may involve a dual mechanism of hydropriming and suppression of fungal pathogens

Background Soaking of sorghum seeds for six hours in an aqueous extract of Eclipta alba has been shown to increase the yield of sorghum in field experiments. The effect on yield is known to depend on field location and a mechanism involving pathogen suppression has been proposed. However, it has not been clear to which extent the same effect can be obtained by soaking of seeds in pure water (hydropriming). To address this question, fifty eight field tests were conducted comparing no treatment of seeds, hydropriming and treatment with plant extract. Experiments were distributed over three years in Burkina Faso on three locations previously showing a positive yield response to the plant extract. Results Despite strong variation across locations and years, a mean yield increase of 19.6% was found for hydropriming compared to no treatment (p?


September 22, 2019  |  

Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene.

Foliicolous algae are a common occurrence in tropical forests. They are referable to a few simple morphotypes (unicellular, sarcinoid-like or filamentous), which makes their morphology of limited usefulness for taxonomic studies and species diversity assessments. The relationship between algal community and their host phyllosphere was not clear. In order to obtain a more accurate assessment, we used single molecule real-time sequencing of the 18S rDNA gene to characterize the eukaryotic algal community in an area of South-western China.We annotated 2922 OTUs belonging to five classes, Ulvophyceae, Trebouxiophyceae, Chlorophyceae, Dinophyceae and Eustigmatophyceae. Novel clades formed by large numbers sequences of green algae were detected in the order Trentepohliales (Ulvophyceae) and the Watanabea clade (Trebouxiophyceae), suggesting that these foliicolous communities may be substantially more diverse than so far appreciated and require further research. Species in Trentepohliales, Watanabea clade and Apatococcus clade were detected as the core members in the phyllosphere community studied. Communities from different host trees and sampling sites were not significantly different in terms of OTUs composition. However, the communities of Musa and Ravenala differed from other host plants significantly at the genus level, since they were dominated by Trebouxiophycean epiphytes.The cryptic diversity of eukaryotic algae especially Chlorophytes in tropical phyllosphere is very high. The community structure at species-level has no significant relationship either with host phyllosphere or locations. The core algal community in tropical phyllopshere is consisted of members from Trentepohliales, Watanabea clade and Apatococcus clade. Our study provided a large amount of novel 18S rDNA sequences that will be useful to unravel the cryptic diversity of phyllosphere eukaryotic algae and for comparisons with similar future studies on this type of communities.


September 22, 2019  |  

Evolution of selective-sequencing approaches for virus discovery and virome analysis.

Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques.

Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated for the viral transcriptome to date.For the deep characterization of the VACV RNA profile, various LRS platforms and library preparation approaches were applied. The raw reads were mapped to the VACV reference genome and also to the host (Chlorocebus sabaeus) genome. In this study, we applied the Pacific Biosciences RSII and Sequel platforms, which altogether resulted in 937,531 mapped reads of inserts (1.42 Gb), while we obtained 2,160,348 aligned reads (1.75 Gb) from the different library preparation methods using the MinION device from Oxford Nanopore Technologies.By applying cutting-edge technologies, we were able to generate a large dataset that can serve as a valuable resource for the investigation of the dynamic VACV transcriptome, the virus-host interactions, and RNA base modifications. These data can provide useful information for novel gene annotations in the VACV genome. Our dataset can also be used to analyze the currently available LRS platforms, library preparation methods, and bioinformatics pipelines.


September 22, 2019  |  

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the various long-read methods. We discuss their applications and their respective strengths and weaknesses and provide future perspectives. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Analysis of gut microbiota – An ever changing landscape.

In the last two decades, the field of metagenomics has greatly expanded due to improvement in sequencing technologies allowing for a more comprehensive characterization of microbial communities. The use of these technologies has led to an unprecedented understanding of human, animal, and environmental microbiomes and have shown that the gut microbiota are comparable to an organ that is intrinsically linked with a variety of diseases. Characterization of microbial communities using next-generation sequencing-by-synthesis approaches have revealed important shifts in microbiota associated with debilitating diseases such as Clostridium difficile infection. But due to limitations in sequence read length, primer biases, and the quality of databases, genus- and species-level classification have been difficult. Third-generation technologies, such as Pacific Biosciences’ single molecule, real-time (SMRT) approach, allow for unbiased, more specific identification of species that are likely clinically relevant. Comparison of Illumina next-generation characterization and SMRT sequencing of samples from patients treated for C. difficile infection revealed similarities in community composition at the phylum and family levels, but SMRT sequencing further allowed for species-level characterization – permitting a better understanding of the microbial ecology of this disease. Thus, as sequencing technologies continue to advance, new species-level insights can be gained in the study of complex and clinically-relevant microbial communities.


September 22, 2019  |  

Influenza virus infection causes global RNAPII termination defects.

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3′ ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3′ extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.


September 22, 2019  |  

Analysis of microbial community structure of pit mud for Chinese strong-flavor liquor fermentation using next generation DNA sequencing of full-length 16S rRNA

The pit is the necessary bioreactor for brewing process of Chinese strong-flavor liquor. Pit mud in pits contains a large number of microorganisms and is a complex ecosystem. The analysis of bacterial flora in pit mud is of great significance to understand liquor fermentation mechanisms. To overcome taxonomic limitations of short reads in 16S rRNA variable region sequencing, we used high-throughput DNA sequencing of near full-length 16S rRNA gene to analyze microbial compositions of different types of pit mud that produce different qualities of strong-flavor liquor. The results showed that the main species in pit mud were Pseudomonas extremaustralis 14-3, Pseudomonas veronii, Serratia marcescens WW4, and Clostridium leptum in Ruminiclostridium. The microbial diversity of pit mud with different quality was significantly different. From poor to good quality of pit mud (thus the quality of liquor), the relative abundances of Ruminiclostridium and Syntrophomonas in Firmicutes was increased, and the relative abundance of Olsenella in Actinobacteria also increased, but the relative abundances of Pseudomonas and Serratia in Proteobacteria were decreased. The surprising findings of this study include that the diversity of intermediate level quality of N pit mud was the lowest, and the diversity levels of high quality pit mud G and poor quality pit mud B were similar. Correlation analysis showed that there were high positive correlations (r > 0.8) among different microbial groups in the flora. Based on the analysis of the microbial structures of pit mud in different quality, the good quality pit mud has a higher microbial diversity, but how this higher diversity and differential microbial compositions contribute to better quality of liquor fermentation remains obscure.


September 22, 2019  |  

Extensive alternative splicing of KIR transcripts.

The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This post-transcriptional process can generate multiple isoforms from a single KIR gene, which diversifies the characteristics of the encoded proteins. For example, alternative splicing could modify ligand interactions, cellular localization, signaling properties, and the number of extracellular domains of the receptor. In humans, we observed abundant splicing for KIR2DL4, and to a lesser extent in the lineage III KIR genes. All experimentally documented splice events are substantiated by in silico splicing strength predictions. To a similar extent, alternative splicing is observed in rhesus macaques, a species that shares a close evolutionary relationship with humans. Splicing profiles of Mamu-KIR1D and Mamu-KIR2DL04 displayed a great diversity, whereas Mamu-KIR3DL20 (lineage V) is consistently spliced to generate a homolog of human KIR2DL5 (lineage I). The latter case represents an example of convergent evolution. Although just a single KIR splice event is shared between humans and macaques, the splicing mechanisms are similar, and the predicted consequences are comparable. In conclusion, alternative splicing adds an additional layer of complexity to the KIR gene system in primates, and results in a wide structural and functional variety of KIR receptors and its isoforms, which may play a role in health and disease.


September 22, 2019  |  

CRISPR/Cas9 deletions in a conserved exon of Distal-less generates gains and losses in a recently acquired morphological novelty in flies.

Distal-less has been repeatedly co-opted for the development of many novel traits. Here, we document its curious role in the development of a novel abdominal appendage (“sternite brushes”) in sepsid flies. CRISPR/Cas9 deletions in the homeodomain result in losses of sternite brushes, demonstrating that Distal-less is necessary for their development. However, deletions in the upstream coding exon (Exon 2) produce losses or gains of brushes. A dissection of Exon 2 reveals that the likely mechanism for gains involves a deletion in an exon-splicing enhancer site that leads to exon skipping. Such contradictory phenotypes are also observed in butterflies, suggesting that mutations in the conserved upstream regions have the potential to generate phenotypic variability in insects that diverged 300 million years ago. Our results demonstrate the importance of Distal-less for the development of a novel abdominal appendage in insects and highlight how site-specific mutations in the same exon can produce contradictory phenotypes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.