Menu
September 22, 2019  |  

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.


September 21, 2019  |  

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions?>?50?bp. Filtering for variants that are absent in an unrelated control and overlap a disease gene coding exon identified three deletions and three insertions. One of these, a heterozygous 2,184?bp deletion, overlaps the first coding exon of PRKAR1A, which is implicated in autosomal dominant Carney complex. RNA sequencing demonstrated decreased PRKAR1A expression. The deletion was classified as pathogenic based on guidelines for interpretation of sequence variants.ConclusionThis first successful application of genome LRS to identify a pathogenic variant in a patient suggests that LRS has significant potential for the identification of disease-causing structural variation. Larger studies will ultimately be required to evaluate the potential clinical utility of LRS.


September 21, 2019  |  

A Sequel to Sanger: amplicon sequencing that scales.

Although high-throughput sequencers (HTS) have largely displaced their Sanger counterparts, the short read lengths and high error rates of most platforms constrain their utility for amplicon sequencing. The present study tests the capacity of single molecule, real-time (SMRT) sequencing implemented on the SEQUEL platform to overcome these limitations, employing 658 bp amplicons of the mitochondrial cytochrome c oxidase I gene as a model system.By examining templates from more than 5000 species and 20,000 specimens, the performance of SMRT sequencing was tested with amplicons showing wide variation in GC composition and varied sequence attributes. SMRT and Sanger sequences were very similar, but SMRT sequencing provided more complete coverage, especially for amplicons with homopolymer tracts. Because it can characterize amplicon pools from 10,000 DNA extracts in a single run, the SEQUEL can reduce greatly reduce sequencing costs in comparison to first (Sanger) and second generation platforms (Illumina, Ion).SMRT analysis generates high-fidelity sequences from amplicons with varying GC content and is resilient to homopolymer tracts. Analytical costs are low, substantially less than those for first or second generation sequencers. When implemented on the SEQUEL platform, SMRT analysis enables massive amplicon characterization because each instrument can recover sequences from more than 5 million DNA extracts a year.


July 19, 2019  |  

Reduction in chromosome mobility accompanies nuclear organization during early embryogenesis in Caenorhabditis elegans.

In differentiated cells, chromosomes are packed inside the cell nucleus in an organised fashion. In contrast, little is known about how chromosomes are packed in undifferentiated cells and how nuclear organization changes during development. To assess changes in nuclear organization during the earliest stages of development, we quantified the mobility of a pair of homologous chromosomal loci in the interphase nuclei of Caenorhabditis elegans embryos. The distribution of distances between homologous loci was consistent with a random distribution up to the 8-cell stage but not at later stages. The mobility of the loci was significantly reduced from the 2-cell to the 48-cell stage. Nuclear foci corresponding to epigenetic marks as well as heterochromatin and the nucleolus also appeared around the 8-cell stage. We propose that the earliest global transformation in nuclear organization occurs at the 8-cell stage during C. elegans embryogenesis.


July 19, 2019  |  

Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing.

The FMR1 gene contains an unstable CGG repeat in its 5′ untranslated region. Premutation alleles range between 55 and 200 repeat units and confer a risk for developing fragile X-associated tremor/ataxia syndrome or fragile X-associated primary ovarian insufficiency. Furthermore, the premutation allele often expands to a full mutation during female germline transmission giving rise to the fragile X syndrome. The risk for a premutation to expand depends mainly on the number of CGG units and the presence of AGG interruptions in the CGG repeat. Unfortunately, the detection of AGG interruptions is hampered by technical difficulties. Here, we demonstrate that single-molecule sequencing enables the determination of not only the repeat size, but also the complete repeat sequence including AGG interruptions in male and female alleles with repeats ranging from 45 to 100 CGG units. We envision this method will facilitate research and diagnostic analysis of the FMR1 repeat expansion. © 2016 WILEY PERIODICALS, INC.


July 19, 2019  |  

Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells.

Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. Copyright © 2017 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Single-molecule sequencing reveals the chromosome-scale genomic architecture of the nematode model organism Pristionchus pacificus.

The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.


July 19, 2019  |  

Coupling of single molecule, long read sequencing with IMGT/HighV-QUEST analysis expedites identification of SIV gp140-specific antibodies from scFv phage display libraries.

The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system®(IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9-25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.


July 19, 2019  |  

Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome.

Fireflies are a family of insects within the beetle order Coleoptera, or winged beetles, and they are one of the most well-known and loved insect species because of their bioluminescence. However, the firefly is in danger of extinction because of the massive destruction of its living environment. In order to improve the understanding of fireflies and protect them effectively, we sequenced the whole genome of the terrestrial firefly Pyrocoelia pectoralis.Here, we developed a highly reliable genome resource for the terrestrial firefly Pyrocoelia pectoralis (E. Oliv., 1883; Coleoptera: Lampyridae) using single molecule real time (SMRT) sequencing on the PacBio Sequel platform. In total, 57.8 Gb of long reads were generated and assembled into a 760.4-Mb genome, which is close to the estimated genome size and covered 98.7% complete and 0.7% partial insect Benchmarking Universal Single-Copy Orthologs. The k-mer analysis showed that this genome is highly heterozygous. However, our long-read assembly demonstrates continuousness with a contig N50 length of 3.04 Mb and the longest contig length of 13.69 Mb. Furthermore, 135 589 SSRs and 341 Mb of repeat sequences were detected. A total of 23 092 genes were predicted; 88.44% of genes were annotated with one or more related functions.We assembled a high-quality firefly genome, which will not only provide insights into the conservation and biodiversity of fireflies, but also provide a wealth of information to study the mechanisms of their sexual communication, bio-luminescence, and evolution.© The Authors 2017. Published by Oxford University Press.


July 19, 2019  |  

Advances in Sequencing and Resequencing in Crop Plants.

DNA sequencing technologies have changed the face of biological research over the last 20 years. From reference genomes to population level resequencing studies, these technologies have made significant contributions to our understanding of plant biology and evolution. As the technologies have increased in power, the breadth and complexity of the questions that can be asked has increased. Along with this, the challenges of managing unprecedented quantities of sequence data are mounting. This chapter describes a few aspects of the journey so far and looks forward to what may lie ahead.


July 19, 2019  |  

Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing.

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.© 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc.


July 19, 2019  |  

Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub.

Ammopiptanthus nanus is a rare broad-leaved shrub that is found in the desert and arid regions of Central Asia. This plant species exhibits extremely high tolerance to drought and freezing and has been used in abiotic tolerance research in plants. As a relic of the tertiary period, A. nanus is of great significance to plant biogeographic research in the ancient Mediterranean region. Here, we report a draft genome assembly using the Pacific Biosciences (PacBio) platform and gene annotation for A. nanus.A total of 64.72 Gb of raw PacBio sequel reads were generated from four 20-kb libraries. After filtering, 64.53 Gb of clean reads were obtained, giving 72.59× coverage depth. Assembly using Canu gave an assembly length of 823.74 Mb, with a contig N50 of 2.76 Mb. The final size of the assembled A. nanus genome was close to the 889 Mb estimated by k-mer analysis. The gene annotation completeness was evaluated using Benchmarking Universal Single-Copy Orthologs; 1,327 of the 1,440 conserved genes (92.15%) could be found in the A. nanus assembly. Genome annotation revealed that 74.08% of the A. nanus genome is composed of repetitive elements and 53.44% is composed of long terminal repeat elements. We predicted ?37,188 protein-coding genes, of which 96.53% were functionally annotated.The genomic sequences of A. nanus could be a valuable source for comparative genomic analysis in the legume family and will be useful for understanding the phylogenetic relationships of the Thermopsideae and the evolutionary response of plant species to the Qinghai Tibetan Plateau uplift.


July 19, 2019  |  

Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes.

Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183?Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.


July 19, 2019  |  

Long-read sequencing across the C9orf72 ‘GGGGCC’ repeat expansion: implications for clinical use and genetic discovery efforts in human disease.

Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 ‘GGGGCC’ (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences’ (PacBio) and Oxford Nanopore Technologies’ (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9.Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinION was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8× coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained >?800× coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual’s repeat region was >?99% G4C2 content, though we cannot rule out small interruptions.Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.


July 19, 2019  |  

Genome organization and DNA accessibility control antigenic variation in trypanosomes.

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.