Menu
September 22, 2019

Strand-seq enables reliable separation of long reads by chromosome via expectation maximization.

Current sequencing technologies are able to produce reads orders of magnitude longer than ever possible before. Such long reads have sparked a new interest in de novo genome assembly, which removes reference biases inherent to re-sequencing approaches and allows for a direct characterization of complex genomic variants. However, even with latest algorithmic advances, assembling a mammalian genome from long error-prone reads incurs a significant computational burden and does not preclude occasional misassemblies. Both problems could potentially be mitigated if assembly could commence for each chromosome separately.To address this, we show how single-cell template strand sequencing (Strand-seq) data can be leveraged for this purpose. We introduce a novel latent variable model and a corresponding Expectation Maximization algorithm, termed SaaRclust, and demonstrates its ability to reliably cluster long reads by chromosome. For each long read, this approach produces a posterior probability distribution over all chromosomes of origin and read directionalities. In this way, it allows to assess the amount of uncertainty inherent to sparse Strand-seq data on the level of individual reads. Among the reads that our algorithm confidently assigns to a chromosome, we observed more than 99% correct assignments on a subset of Pacific Bioscience reads with 30.1×?coverage. To our knowledge, SaaRclust is the first approach for the in silico separation of long reads by chromosome prior to assembly.https://github.com/daewoooo/SaaRclust.


September 22, 2019

Human copy number variants are enriched in regions of low mappability.

Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.


September 22, 2019

A synthetic-diploid benchmark for accurate variant-calling evaluation.

Existing benchmark datasets for use in evaluating variant-calling accuracy are constructed from a consensus of known short-variant callers, and they are thus biased toward easy regions that are accessible by these algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two fully homozygous human cell lines, which provides a relatively more accurate and less biased estimate of small-variant-calling error rates in a realistic context.


September 22, 2019

A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species.

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta, two related Malpighiales species with available fully sequenced genomes were examined. Overall, gene order was well conserved, with some disruptions of collinearity identified as rearrangements, such as inversion and translocation events. The microsynteny level observed between the P. edulis sequences and the compared genomes is surprising, given the long divergence time that separates them from the common ancestor. P. edulis gene-rich segments are more compact than those of the other two species, even though its genome is much larger. This study provides a first accurate gene set for P. edulis, opening the way for new studies on the evolutionary issues in Malpighiales genomes.


September 22, 2019

Ring synthetic chromosome V SCRaMbLE.

Structural variations (SVs) exert important functional impacts on biological phenotypic diversity. Here we show a ring synthetic yeast chromosome V (ring_synV) can be used to continuously generate complex genomic variations and improve the production of prodeoxyviolacein (PDV) by applying Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution (SCRaMbLE) in haploid yeast cells. The SCRaMbLE of ring_synV generates aneuploid yeast strains with increased PDV productivity, and we identify aneuploid chromosome I, III, VI, XII, XIII, and ring_synV. The neochromosome of SCRaMbLEd ring_synV generated more unbalanced forms of variations, including duplication, insertions, and balanced forms of translocations and inversions than its linear form. Furthermore, of the 29 novel SVs detected, 11 prompted the PDV biosynthesis; and the deletion of uncharacterized gene YER182W is related to the improvement of the PDV. Overall, the SCRaMbLEing ring_synV embraces the evolution of the genome by modifying the chromosome number, structure, and organization, identifying targets for phenotypic comprehension.


September 22, 2019

Ma orthologous genes in Prunus spp. shed light on a noteworthy NBS-LRR cluster conferring differential resistance to root-knot nematodes.

Root-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In Prunus spp., the Ma plum and RMja almond genes possess different spectra for resistance to RKNs. While previous works based on the Ma gene allowed to clone it and to decipher its peculiar TIR-NBS-LRR (TNL) structure, we only knew that the RMja gene mapped on the same chromosome as Ma. We carried out a high-resolution mapping using an almond segregating F2 progeny of 1448 seedlings from resistant (R) and susceptible (S) parental accessions, to locate precisely RMja on the peach genome, the reference sequence for Prunus species. We showed that the RMja gene maps in the Ma resistance cluster and that the Ma ortholog is the best candidate for RMja. This co-localization is a crucial step that opens the way to unravel the molecular determinants involved in the resistance to RKNs. Then we sequenced both almond parental NGS genomes and aligned them onto the RKN susceptible reference peach genome. We produced a BAC library of the R parental accession and, from two overlapping BAC clones, we obtained a 336-kb sequence encompassing the RMja candidate region. Thus, we could benefit from three Ma orthologous regions to investigate their sequence polymorphism, respectively, within plum (complete R spectrum), almond (incomplete R spectrum) and peach (null R spectrum). We showed that the Ma TNL cluster has evolved orthologs with a unique conserved structure comprised of five repeated post-LRR (PL) domains, which contain most polymorphism. In addition to support the Ma and RMja orthologous relationship, our results suggest that the polymorphism contained in the PL sequences might underlie differential resistance interactions with RKNs and an original immune mechanism in woody perennials. Besides, our study illustrates how PL exon duplications and losses shape TNL structure and give rise to atypical PL domain repeats of yet unknown role.


September 22, 2019

Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity.

Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3?Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X for Y). Our analysis reveals a new genomic expansion and greater complexity for those multi-copy gene families related to infection process and disease development, such as Trans-sialidases, Mucins and Mucin Associated Surface Proteins, among others. On one side, we demonstrate that multi-copy gene families are located near telomeric regions of the “chromosome-like” 1.3?Mb contig assembled of Bug2148, where they likely suffer high evolutive pressure. On the other hand, we identified several strain-specific single copy genes that might help to understand the differences in infectivity and physiology among strains. In summary, our results indicate that T. cruzi has a complex genomic architecture that may have promoted its evolution.


September 22, 2019

The opium poppy genome and morphinan production.

Morphinan-based painkillers are derived from opium poppy (Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the STORR gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019

Genome sequence of the cauliflower mushroom Sparassis crispa (Hanabiratake) and its association with beneficial usage.

Sparassis crispa (Hanabiratake) is a widely used medicinal mushroom in traditional Chinese medicine because it contains materials with pharmacological activity. Here, we report its 39.0-Mb genome, encoding 13,157 predicted genes, obtained using next-generation sequencing along with RNA-seq mapping data. A phylogenetic analysis by comparison with 25 other fungal genomes revealed that S. crispa diverged from Postia placenta, a brown-rot fungus, 94 million years ago. Several features specific to the genome were found, including the A-mating type locus with the predicted genes for HD1 and HD2 heterodomain transcription factors, the mitochondrial intermediate peptidase (MIP), and the B-mating type locus with seven potential pheromone receptor genes and three potential pheromone precursor genes. To evaluate the benefits of the extract and chemicals from S. crispa, we adopted two approaches: (1) characterization of carbohydrate-active enzyme (CAZyme) genes and ß-glucan synthase genes and the clusters of genes for the synthesis of second metabolites, such as terpenes, indoles and polyketides, and (2) identification of estrogenic activity in its mycelial extract. Two potential ß-glucan synthase genes, ScrFKS1 and ScrFKS2, corresponding to types I and II, respectively, characteristic of Agaricomycetes mushrooms, were newly identified by the search for regions homologous to the reported features of ß-glucan synthase genes; both contained the characteristic transmembrane regions and the regions homologous to the catalytic domain of the yeast ß-glucan synthase gene FKS1. Rapid estrogenic cell-signaling and DNA microarray-based transcriptome analyses revealed the presence of a new category of chemicals with estrogenic activity, silent estrogens, in the extract. The elucidation of the S. crispa genome and its genes will expand the potential of this organism for medicinal and pharmacological purposes.


September 22, 2019

Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements.

Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long evolutionary separation. We conclude that they have in a convergent manner accumulated similar patterns of tandem inversions and dense repeat clusters, presumably in response to similar needs to create linkage between genes causing drive and resistance.


September 22, 2019

Targeted genotyping of variable number tandem repeats with adVNTR.

Whole-genome sequencing is increasingly used to identify Mendelian variants in clinical pipelines. These pipelines focus on single-nucleotide variants (SNVs) and also structural variants, while ignoring more complex repeat sequence variants. Here, we consider the problem of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short (6-100 bp) repeating units. VNTRs span 3% of the human genome, are frequently present in coding regions, and have been implicated in multiple Mendelian disorders. Although existing tools recognize VNTR carrying sequence, genotyping VNTRs (determining repeat unit count and sequence variation) from whole-genome sequencing reads remains challenging. We describe a method, adVNTR, that uses hidden Markov models to model each VNTR, count repeat units, and detect sequence variation. adVNTR models can be developed for short-read (Illumina) and single-molecule (Pacific Biosciences [PacBio]) whole-genome and whole-exome sequencing, and show good results on multiple simulated and real data sets.© 2018 Bakhtiari et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining gaps to perform comprehensive genomic analyses that do not simply ‘mask’ repeats.


September 22, 2019

The genomic architecture and molecular evolution of ant odorant receptors.

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.© 2018 McKenzie and Kronauer; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


September 22, 2019

Genomic Tandem Quadruplication is Associated with Ketoconazole Resistance in Malassezia pachydermatis.

Malassezia pachydermatis is a commensal yeast found on the skin of dogs. However, M. pachydermatis is also considered an opportunistic pathogen and is associated with various canine skin diseases including otitis externa and atopic dermatitis, which usually require treatment using an azole antifungal drug, such as ketoconazole. In this study, we isolated a ketoconazole-resistant strain of M. pachydermatis, designated “KCTC 27587,” from the external ear canal of a dog with otitis externa and analyzed its resistance mechanism. To understand the mechanism underlying ketoconazole resistance of the clinical isolate M. pachydermatis KCTC 27587, the whole genome of the yeast was sequenced using the PacBio platform and was compared with M. pachydermatis type strain CBS 1879. We found that a ~84-kb region in chromosome 4 of M. pachydermatis KCTC 27587 was tandemly quadruplicated. The quadruplicated region contains 52 protein coding genes, including the homologs of ERG4 and ERG11, whose overexpression is known to be associated with azole resistance. Our data suggest that the quadruplication of the ~84-kb region may be the cause of the ketoconazole resistance in M. pachydermatis KCTC 27587.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.