PacBio sequencing holds promise for addressing large-genome complexities, such as long, highly repetitive, low-complexity regions and duplication events that are difficult to resolve with short-read technologies. Several strategies, with varying outcomes, are available for de novo sequencing and assembling of larger genomes. Using a diploid fungal genome, estimated to be ~80 Mb in size, as the basis dataset for comparison, we highlight assembly options when using only PacBio sequencing or a combined strategy leveraging data sets from multiple sequencing technologies. Data generated from SMRT Sequencing was subjected to assembly using different large-genome assemblers, and comparisons of the results will be…
HLA-DPB1 mismatching between patients and unrelated donors is known to increase the risk of acute graft-versus-host-disease (GvHD) after hematopoietic stem cell transplantation. If only HLA-DPB1 mismatched donors are available, the genotype defined by the Single Nucleotide Polymorphism (SNP) rs9277534 can be used to select mismatched donors that are well-tolerated. However, since rs9277534 resides within the 3’ untranslated region (UTR), it usually is not analyzed during DPB1 routine typing.
This animation depicts a process by which single molecule SMRTbell templates are loaded in the Zero Mode Waveguides (ZMWs) of the PacBio RS II sequencing system using the automated MagBead Station.
PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
This tutorial provides a high-level overview of the features contained within the SMRT Link software. SMRT Link is the web-based end-to-end software workflow manager for run design and set-up on the Sequel System, Data Management, and SMRT Analysis.
This webinar, presented by Nisha Pillai, provides an overview of amplicon sequencing to target specific regions of a genome using PacBio Single Molecule, Real-Time (SMRT) Sequencing. This session provides an overview of bioinformatics approaches for PacBio amplicon analysis including circular consensus sequencing and long amplicon analysis.
In this ASHG 2020 PacBio Workshop Jonas Korlach, CSO, shares how the new PacBio Sequel IIe System makes highly accurate long-read sequencing easy and affordable so?all scientists can gain comprehensive views of human genomes and transcriptomes. He goes on to provide updates on the applications including human WGS for variant detection, de novo genome assembly, single-cell full-length RNA sequencing, and targeted sequencing using PCR and No-Amp methods.
Yellowhorn (Xanthoceras sorbifolium) is a species of the Sapindaceae family native to China and is an oil tree that can withstand cold and drought conditions. A pseudomolecule-level genome assembly for this species will not only contribute to understanding the evolution of its genes and chromosomes but also bring yellowhorn breeding into the genomic era.Here, we generated 15 pseudomolecules of yellowhorn chromosomes, on which 97.04% of scaffolds were anchored, using the combined Illumina HiSeq, Pacific Biosciences Sequel, and Hi-C technologies. The length of the final yellowhorn genome assembly was 504.2 Mb with a contig N50 size of 1.04 Mb and a…
Zizania latifolia Turcz., which is mainly distributed in Asia, has had a long cultivation history as a cereal and vegetable crop. On infection with the smut fungus Ustilago esculenta, Z. latifolia becomes an edible vegetable, water bamboo. Two main cultivars, with a green shell and red shell, are cultivated for commercial production in Taiwan. Previous studies indicated that cultivars of Z. latifolia may be related to the infected U. esculenta isolates. However, related research is limited. The infection process of the corn smut fungus Ustilago maydis is coupled with sexual development and under control of the mating type locus. Thus,…
We report a family with progressive myoclonic epilepsy who underwent whole-exome sequencing but was negative for pathogenic variants. Similar clinical courses of a devastating neurodegenerative phenotype of two affected siblings were highly suggestive of a genetic etiology, which indicates that the survey of genetic variation by whole-exome sequencing was not comprehensive. To investigate the presence of a variant that remained unrecognized by standard genetic testing, PacBio long-read sequencing was performed. Structural variant (SV) detection using low-coverage (6×) whole-genome sequencing called 17,165 SVs (7,216 deletions and 9,949 insertions). Our SV selection narrowed down potential candidates to only five SVs (two deletions…
Long-read sequencing technology is now capable of reading single-molecule DNA with an average read length of more than 10?kb, fully enabling the coverage of large structural variations (SVs). This advantage may pave the way for the detection of unprecedented SVs as well as repeat expansions. Pathogenic SVs of only known genes used to be selectively analyzed based on prior knowledge of target DNA sequence. The unbiased application of long-read whole-genome sequencing (WGS) for the detection of pathogenic SVs has just begun. Here, we apply PacBio SMRT sequencing in a Japanese family with benign adult familial myoclonus epilepsy (BAFME). Our SV…
Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed…