Menu
April 21, 2020  |  

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ~290 to 300?kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.Copyright © 2019 Roschanski et al.


April 21, 2020  |  

Genetic Diversity of Salmonella Derby from the Poultry Sector in Europe.

Salmonella Derby (S. Derby) is emerging in Europe as a predominant serovar in fattening turkey flocks. This serovar was recorded as being predominant in the turkey sector in 2014 in the United Kingdom (UK). Only two years later, in 2016, it was also recorded in the turkey and broiler sectors in Ireland and Spain. These S. Derby isolates were characterised as members of the multilocus sequence type (MLST) profile 71 (ST71). For the first time, we characterise by whole genome sequencing (WGS) analysis a panel of 90 S. Derby ST71 genomes to understand the routes of transmission of this emerging pathogen within the poultry/turkey food trade. Selected panel included strains isolated as early as 2010 in five leading European g countries for turkey meat production. Twenty-one of the 90 genomes were extracted from a public database-Enterobase. Five of these originated from the United States (n=3), China (n=1) and Taiwan (n=1) isolated between 1986 and 2016. A phylogenomic analysis at the core-genome level revealed the presence of three groups. The largest group contained 97.5% of the European strains and included both, turkey and human isolates that were genetically related by an average of 35 ± 15 single nucleotide polymorphism substitutions (SNPs). To illustrate the diversity, the presence of antimicrobial resistance genes and phages were characteised in 30, S. Derby ST71 genomes, including 11 belonging to this study This study revealed an emergent turkey-related S. Derby ST71 clone circulating in at least five European countries (the UK, Germany, Poland, Italy, and France) since 2010 that causes human gastroenteritis. A matter of concern is the identification of a gyrA mutation involved in resistance to quinolone, present in the Italian genomes. Interestingly, the diversity of phages seems to be related to the geographic origins. These results constitute a baseline for following the spread of this emerging pathogen and identifying appropriate monitoring and prevention measures.


April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein.

Lactic acid bacteria produce a variety of antimicrobial peptides known as bacteriocins. Most bacteriocins are understood to kill sensitive bacteria through receptor-mediated disruptions. Here, we report on the identification of the Lactobacillus plantarum plantaricin EF (PlnEF) receptor. Spontaneous PlnEF-resistant mutants of the PlnEF-indicator strain L. plantarum NCIMB 700965 (LP965) were isolated and confirmed to maintain cellular ATP levels in the presence of PlnEF. Genome comparisons resulted in the identification of a single mutated gene annotated as the membrane-bound, magnesium/cobalt efflux protein CorC. All isolates contained a valine (V) at position 334 instead of a glycine (G) in a cysteine-ß-synthase domain at the C-terminal region of CorC. In silico template-based modeling of this domain indicated that the mutation resides in a loop between two ß-strands. The relationship between PlnEF, CorC, and metal homeostasis was supported by the finding that PlnEF-resistance was lost when PlnEF was applied together with high concentrations of Mg2+ , Co2+ , Zn2+ , or Cu2+ . Lastly, PlnEF sensitivity was increased upon heterologous expression of LP965 corC but not the G334V CorC mutant in the PlnEF-resistant strain Lactobacillus casei BL23. These results show that PlnEF kills sensitive bacteria by targeting CorC. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580.

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


April 21, 2020  |  

Genetic characterisation of variants of the virulence plasmid, pSLT, in Salmonella enterica serovar Typhimurium provides evidence of a variety of evolutionary directions consistent with vertical rather than horizontal transmission.

The virulence plasmid pSLT as exemplified by the 94 Kb plasmid in Salmonella Typhimurium strain LT2 is only found in isolates of serovar Typhimurium. While it occurs commonly among such isolates recent genotyping methods have shown that it is mostly confined to certain genotypes. Although pSLT plasmids are capable of self-transmissibility under experimental conditions their confinement to certain host genotypes suggests that in practice they are maintained by vertical rather than by horizontal transmission. This would imply that evolution of the pSLT plasmid proceeds in parallel with evolution of its host. The development of a phylogenetic evolutionary framework for genotypes of S. Typhimurium based on single-nucleotide-polymorphism (SNPs) typing provided an opportunity to test whether the pSLT plasmid coevolves with its host genotype. Accordingly SNPs analysis was applied to the pSLT plasmids from 71 strains S. Typhimurium of Australian and international origins representing most of the genotypes which commonly have a pSLT. The phylogenetic tree showed that pSLT sequences clustered into almost the same groups as the host chromosomes so that each pSLT genotype was associated with a single host genotype. A search for tandem repeats in pSLT plasmids showed that a 9 bp VNTR in the traD gene occurred in the pSLT from all isolates belonging to Clade II but not from isolates belonging to Clade I. Another 9 bp repeat occurred only in three Clade I genotypes with a recent common ancestor. The evidence relating to both of these VNTRs supports the proposition that the pSLT plasmid is only transmitted vertically. Some isolates belonging to one S. Typhimurium genotype were found to have pSLTs which have lost a large block of genes when a resistance gene cassette has been acquired. Examples were found of pSLT plasmids which have recombined with other plasmids to form fusion plasmids sometimes with loss of some pSLT genes. In all cases the underlying genotype of the modified pSLT was the same as the genotype of regular pSLTs with the same host genotype implying that these changes have occurred within the host cell of the pSLT plasmid.


April 21, 2020  |  

Complete Genome Sequences of Four Salmonella enterica Strains (Including Those of Serotypes Montevideo, Mbandaka, and Lubbock) Isolated from Peripheral Lymph Nodes of Healthy Cattle.

Salmonella enterica serotype Lubbock emerged most likely from a Salmonella enterica serotype Mbandaka ancestor that acquired by recombination the fliC operon from Salmonella enterica serotype Montevideo. Here, we report the complete genome sequence of two S. Lubbock, one S. Montevideo, and one S. Mbandaka strain isolated from bovine lymph nodes.


April 21, 2020  |  

Complete Genome Sequence of Salmonella enterica Serovar Enteritidis NCM 61, with High Potential for Biofilm Formation, Isolated from Meat-Related Sources.

Here, we report the complete genome sequence of strain NMC 61 of Salmonella enterica serovar Enteritidis, which was previously isolated from conveyor belts during chicken slaughter and has the potential to form biofilms on several surfaces. The genome is predicted to contain 110 noncoding small RNAs on the chromosome.


April 21, 2020  |  

Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing

Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium.IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.


April 21, 2020  |  

Comparative Genomics Approaches to Understanding Virulence and Antimicrobial Resistance of Salmonella Typhimurium ST1539 Isolated from a Poultry Slaughterhouse in Korea.

Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.


April 21, 2020  |  

Emergence of a ST2570 Klebsiella pneumoniae isolate carrying mcr-1 and blaCTX-M-14 recovered from a bloodstream infection in China.

The worldwide emergence of the plasmid-borne colistin resistance mediated by mcr-1 gene not only extended our knowledge on colistin resistance, but also poses a serious threat to clinical and public health [1, 2]. Since its first discovery, mcr-1-carrying Enterobacteriaceae from human, animal, food, and environmental origins have been widely identified, but few mcr-1-positive clinical strains of Klebsiella pneumoniae have been reported so far, especially when associated with community-acquired infections [3, 4]. Here, we report the emergence of a colistin-resistant K. pneumoniae isolate, which belonged to a rare sporadic clone, co-carrying mcr-1 and blaCTX-M-14 genes simultaneous recovered from a community-acquired bloodstream infection in China. Whole-genome sequencing and microbiological analysis were performed to elucidate its antimicrobial resistance mechanisms.


April 21, 2020  |  

Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids.

Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be fused with a novel Incl1 type conjugative helper plasmid, which could target insertion sequence (IS) elements located in the non-conjugative, ciprofloxacin-resistance-encoding plasmid through replicative transcription, eventually forming a hybrid conjugative plasmid transmissible among members of Enterobacteriaceae. Since our data showed that such conjugative helper plasmids are commonly detectable among clinical Salmonella strains, particularly S. Typhimurium, fusion events leading to generation and enhanced dissemination of conjugative ciprofloxacin resistance-encoding plasmids in Salmonella are expected to result in a sharp increase in the incidence of resistance to fluoroquinolone, the key choice for treating life-threatening Salmonella infections, thereby posing a serious public health threat.


April 21, 2020  |  

Salmonella harbouring the mcr-1 gene isolated from food in China between 2012 and 2016.

In November 2015, plasmid-mediated transferable colistin resistance encoded by the mcr-1 gene in Escherichia coli and Klebsiella pneumonia isolates was reported in China with a high rate of in vitro horizontal transfer (10-1–10-3 cells per recipient cell by conjugation).1 At that time, the mcr-1 gene had already been identified in >30 countries across five continents, with novel mcr-2, mcr-3, mcr-4 and mcr-5 genes being reported subsequently.2–5 Recently, a surveillance study was performed on mainland China to investigate the prevalence of the mcr-1 gene in foodborne Salmonella isolates isolated from various food matrices and others collected…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.