Menu
April 21, 2020  |  

Allopseudarcicella aquatilis gen. nov., sp. nov., isolated from freshwater.

A Gram-stain-negative, rod-shaped and red-pigmented strain, HME7025T, was isolated from freshwater sampled in the Republic of Korea. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain HME7025T formed a lineage within the family Cytophagaceae of the phylum Bacteroidetes. Strain HME7025T was closely related to the genera Pseudarcicella, Arcicella and Flectobacillus. The 16S rRNA gene sequence similarity values of strain HME7025T were under 94.5?% to its closest phylogenetic neighbours. The major fatty acids of strain HME7025T were iso-C15?:?0 (41.9?%), summed feature 3 (comprising C16?:?1?7c and/or C16?:?1?6c; 12.2?%) and anteiso-C15?:?0 (10.8?%). The major respiratory quinone was menaquinone-7. The major polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and one unidentified polar lipid. The DNA G+C content of strain HME7025T was 37.9?mol%. On the basis of the evidence presented in this study, strain HME7025T represents a novel species of a novel genus within the family Cytophagaceae, for which the name Allopseudarcicella aquatilis gen. nov., sp. nov. is proposed. The type strain is HME7025T (=KCTC 23617T=CECT 7957T).


April 21, 2020  |  

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase and glutathione peroxidase, might be related to the synthesis of AgNPs. Meanwhile, many additional genes associated with synthesis of AgNPs such as protein-disulfide isomerase, c-type cytochrome, glutathione synthase and dehydrogenase reductase were also identified.


April 21, 2020  |  

Complete Whole-Genome Sequences of Two Raoultella terrigena Strains, NCTC 13097 and NCTC 13098, Isolated from Human Cases.

Raoultella terrigena is a bacterial species associated with soil and aquatic environments; however, sporadic cases of opportunistic disease in humans have been reported. Here, we report the first two complete genome sequences from clinical strains isolated from human sources that have been deposited in the National Collection of Type Cultures (NCTC). © Crown copyright 2019.


April 21, 2020  |  

Dual Role of gnaA in Antibiotic Resistance and Virulence in Acinetobacter baumannii.

Acinetobacter baumannii is an important Gram-negative pathogen in hospital-related infections. However, treatment options for A. baumannii infections have become limited due to multidrug resistance. Bacterial virulence is often associated with capsule genes found in the K locus, many of which are essential for biosynthesis of the bacterial envelope. However, the roles of other genes in the K locus remain largely unknown. From an in vitro evolution experiment, we obtained an isolate of the virulent and multidrug-resistant A. baumannii strain MDR-ZJ06, called MDR-ZJ06M, which has an insertion by the ISAba16 transposon in gnaA (encoding UDP-N-acetylglucosamine C-6 dehydrogenase), a gene found in the K locus. The isolate showed an increased resistance toward tigecycline, whereas the MIC decreased in the case of carbapenems, cephalosporins, colistin, and minocycline. By using knockout and complementation experiments, we demonstrated that gnaA is important for the synthesis of lipooligosaccharide and capsular polysaccharide and that disruption of the gene affects the morphology, drug susceptibility, and virulence of the pathogen.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Aquella oligotrophica gen. nov. sp. nov.: A new member of the family Neisseriaceae isolated from laboratory tap water.

A bacterial strain designated as P08T was isolated from laboratory tap water during a water quality assessment in University of Malaya, Malaysia. The strain was a Gram-negative, rod-shaped, nonmotile, and aerobic bacterium. Complete genome of P08T comprised of a 2,820,660 bp chromosome with a G + C content of 36.43%. Both 16S rRNA phylogeny and phylogenetic tree inferred from the core gene matrix demonstrated that P08T formed a hitherto unknown subline within the family Neisseriaceae. Ortho average nucleotide identity (OrthoANI) values and the percentage of conserved proteins (POCP) calculated from complete genome sequence indicated low relatedness between P08T and its phylogenetic neighbors. Respiratory quinone analysis revealed Q-8 as the only detectable quinone. The predominant cellular fatty acids were identified as C14:0 , iso-C15:0 , and summed feature 3 (C16:1 ?7c/C16:1 ?6c). The polar lipids consisted of uncharacterized aminolipid, phosphatidylglycerol, and phosphatidylethanolamine. All aspects of phenotypic and phylogenetic data suggested that strain P08T represents a novel genus within family Neisseriaceae, for which the name Aquella gen. nov. is proposed. The type species of the genus is Aquella oligotrophica sp. nov., and the type strain is P08T (=LMG 29629T =DSM 100970T ). © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria.

Recent metagenomic analysis has revealed that our gut microbiota plays an important role in not only the maintenance of our health but also various diseases such as obesity, diabetes, inflammatory bowel disease, and allergy. However, most intestinal bacteria are considered ‘unculturable’ bacteria, and their functions remain unknown. Although culture-independent genomic approaches have enabled us to gain insight into their potential roles, culture-based approaches are still required to understand their characteristic features and phenotypes. To date, various culturing methods have been attempted to obtain these ‘unculturable’ bacteria, but most such methods require advanced techniques. Here, we have tried to isolate possible unculturable bacteria from a healthy Japanese individual by using commercially available media. A 16S rRNA (ribosomal RNA) gene metagenomic analysis revealed that each culture medium showed bacterial growth depending on its selective features and a possibility of the presence of novel bacterial species. Whole genome sequencing of these candidate strains suggested the isolation of 8 novel bacterial species classified in the Actinobacteria and Firmicutes phyla. Our approach indicates that a number of intestinal bacteria hitherto considered unculturable are potentially culturable and can be cultured on commercially available media. We have obtained novel gut bacteria from a healthy Japanese individual using a combination of comprehensive genomics and conventional culturing methods. We would expect that the discovery of such novel bacteria could illuminate pivotal roles for the gut microbiota in association with human health.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

Mucilaginibacter xinganensis sp. nov., a phenanthrene-degrading bacterium isolated from wetland soil.

An aerobic, Gram-stain negative, rod-shaped and non-motile strain, BJC16-A31T, was isolated from the wetland soil sample taken from Daxing’anling, Heilongjiang, People’s Republic of China. Strain BJC16-A31T was found to be oxidase- and catalase-positive, and produced light orange colonies on modified R2A agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BJC16-A31T is closely related to Mucilaginibacter gotjawali SA3-7T with 96.54% sequence similarity and it formed a separate lineage in the genus Mucilaginibacter. Strain BJC16-A31T contained menaquinone-7 (MK-7) as the predominant isoprenoid quinine. Anteiso-C15:0, C16:0 and anteiso-C15:0 were the major fatty acids. The major polar lipids were phosphatidylethanolamine, six unidentified polar lipid, two unidentified aminophospholipids and one unidentified aminolipid. The genome is composed of a circular 5,301,339 bp chromosome with average G?+?C percentage of 42.25%. The Average Nucleotide Identity (ANI) between strain BJC16-A31T and M. gotjawali SA3-7T was 77.51%. Combined phenotypic, chemotaxonomic, phylogenetic and genomic characteristics support the conclusion that strain BJC16-A31T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter xinganensis sp. nov. is proposed. The type strain is BJC16-A31T (=?CGMCC 1.12728T?=?NBRC 110384T).


April 21, 2020  |  

Complete genome sequence of Bradymonas sediminis FA350T, the first representative of the order Bradymonadales

Bradymonas sediminis FA350T (=DSM 28820T?=?CICC 10904T) is a Gram-negative, rod-shaped and facultatively anaerobic bacterium isolated from coastal sediments from the Xiaoshi Island, Weihai, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that that strain FA350T belonged to a novel bacterial order in the class Deltaproteobacteria. Then, based on polyphasic taxonomy analyses, a novel order Bradymonadales and a novel family Bradymonadaceae were proposed and validly published. Here, we reported the complete genome of this strain; the genome is 5,045,683?bp in size, has a GC content of 61.1% and contains 3992 predicted genes. Strain FA350T featured being able to prey on bacteria like the members from the order Myxococcales. This is in concordance with the fact that strain FA350T encoded genes affiliated with ABC-transporter, type IV pilus, type II secretion system, toxins and chemotaxis, which are known to play critical roles in bacterial predation. This genome data will provide insights into the bacterial predation pattern of strain FA350T and facilitate the investigation of the mutual interaction between predators and prey. Nucleotide sequence accession number The complete genome sequence of B. sediminis FA350T is available in the NCBI database (accession number CP030032). The strain has been deposited in the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture and China Centre of Industrial Culture Collection (=DSM 28820T?=?CICC 10904T).


April 21, 2020  |  

First report of isolation and complete genome of Vibrio rotiferianus strain SSVR1601 from cage-cultured black rockfish (Sebastes schlegelii) associated with skin ulcer.

Vibrio rotiferianus is an important marine pathogen of various aquatic organisms and can be found widely distributed in the marine environment. To further characterize this pathogen, the pathogenic properties and genome of V. rotiferianus SSVR1601 isolated from Sebastes schlegelii with skin ulcer were analysed. SSVR1601 was shown to be short rod-shaped cell with a single polar flagellum. Different degrees of pathological changes in fish kidney, intestine, gills and liver were observed after SSVR1601 challenge. The SSVR1601 genome consists of two chromosomes and two plasmids with a total of 5,717,113 bp, 42.04%-44.93% GC content, 5,269 predicted CDSs, 134 tRNAs and 40 rRNAs. The common virulence factors including OMPs, haemolysin, flagellin, DNase, entF, algU, tcpI, acfB and rfaD were found in strain SSVR1601. Furthermore, factors responsible for iron uptake (fur, fepC and ccmC) and types II, IV and VI secretion systems were detected, which are likely responsible for the pathogenicity of SSVR1601. The antimicrobial resistance genes, bacA, tet34 and norM, were detected based on Antibiotic Resistance Genes Database. The phylogenetic analysis revealed SSVR1601 to be most closely related to V. rotiferianus strains CAIM577 and B64D1. © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Mediterraneibacter butyricigenes sp. nov., a butyrate-producing bacterium isolated from human faeces.

A Gram-stain-positive, obligately anaerobic, non-motile, nonspore-forming, and rod-shaped bacterial strain, designated KGMB01110T, was isolated from a faecal sample of a healthy male in South Korea. Phylogenetic analysis based on 16S rRNA gene showed that strain KGMB01110T belonged to Clostridium cluster XIVa and was most closely related to Mediterraneibacter glycyrrhizinilyticus KCTC 5760T (95.9% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB01110T based on its whole genome sequence was 44.1 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0 and C16:0. The strain KGMB01110T was positive for arginine dihydrolase, ß-galactosidase-6-phosphatase, and alkaline phosphatase. The strain KGMB01110T also produced acid from D-glucose and D-rhamnose, and hydrolyzed gelatin and aesculin. Furthermore, HPLC analysis and UV-tests of culture supernatant revealed that the strain KGMB01110T produced butyrate as the major end product of glucose fermentation. Based on the phylogenetic and phenotypic characteristics, strain KGMB01110T represent a novel species of the genus Mediterraneibacter in the family Lachnospiraceae. The type strain is KGMB01110T (= KCTC 15684T = CCUG 72830T).


April 21, 2020  |  

Fudania jinshanensis gen. nov., sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) in China.

Two hitherto unknown bacteria (strains 313T and 352) were recovered from the faeces of Tibetan antelopes on the Tibet-Qinghai Plateau, PR China. Cells were rod-shaped and Gram-stain-positive. The optimal growth conditions were at 37?°C and pH 7. The isolates were closely related to Actinotignum sanguinis (92.6?% 16S rRNA gene sequence similarity), Arcanobacterium haemolyticum (92.5?%), Actinotignum schaalii (92.4?%), Actinobaculum massiliense (92.2?%) and Flaviflexus huanghaiensis (91.6?%). Phylogenetic analyses showed that strains 313T and 352 clustered independently in the vicinity of the genera Actinotignum, Actinobaculum and Flaviflexus, but could not be classified clearly as a member of any of these genera. Phylogenomic analysis also indicated that strains 313T and 352 formed an independent branch in the family Actinomycetaceae. The major cellular fatty acids of the strains were C16?:?0 and C18?:?1?9c. The polar lipids comprised diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylglycerol, phosphatidylinositol and five unidentified components. The peptidoglycan contained lysine, alanine and glutamic acid. The respiratory quinone was absent. The whole-cell sugars included glucose and rhamnose. The DNA G+C?content of strain 313T was 60.6?mol%. Based on the low 16S rRNA gene sequence similarities, its taxonomic position in the phylogenetic and phylogenomic trees and its unique lipid pattern, we propose that strains 313T and 352 represent members of a novel species in a new genus, for which the name Fudania jinshanensis gen. nov., sp. nov. is proposed. The type strain is 313T (=CGMCC 4.7453T=DSM 106216T).


April 21, 2020  |  

Multidrug-Resistant Bovine Salmonellosis Predisposing for Severe Human Clostridial Myonecrosis.

BACKGROUND The overuse of antibiotics in animals promotes the development of multidrug-resistance predisposing for severe polymicrobial human infections. CASE REPORT We describe a case of spontaneous clostridial myonecrosis due to ulcerative colonic infection with multidrug-resistant Salmonella enterica subsp. enterica, serotype 4,[5],12: i: -. Serotyping of the colonic Salmonella isolate in the index case and the bovine farm outbreak isolates from where the patient worked indicated they were both serotype I 4,[5],12: i: -, which is linked with a multitude of large reported disease outbreaks. Further analysis revealed that they are highly genetically related and antibiotic susceptibility testing indicated that they are phenotypically identical. CONCLUSIONS Enteritis due to human acquisition of multidrug-resistant Salmonella from cattle led to the invasion and dissemination of Clostridium septicum resulting in devastating myonecrotic disease. This highlights the ramifications of co-existence and evolution of pathogenic bacteria in animals and humans and lends support to reducing the use of antibiotics in animals.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.