Menu
June 1, 2021  |  

A method for the identification of variants in Alzheimer’s disease candidate genes and transcripts using hybridization capture combined with long-read sequencing

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual causal variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2015;18:421-430).


June 1, 2021  |  

SMRT Sequencing of full-length androgen receptor isoforms in prostate cancer reveals previously hidden drug resistant variants

Prostate cancer is the most frequently diagnosed male cancer. For prostate cancer that has progressed to an advanced or metastatic stage, androgen deprivation therapy (ADT) is the standard of care. ADT inhibits activity of the androgen receptor (AR), a master regulator transcription factor in normal and cancerous prostate cells. The major limitation of ADT is the development of castration-resistant prostate cancer (CRPC), which is almost invariably due to transcriptional re-activation of the AR. One mechanism of AR transcriptional re-activation is expression of AR-V7, a truncated, constitutively active AR variant (AR-V) arising from alternative AR pre-mRNA splicing. Noteworthy, AR-V7 is being developed as a predictive biomarker of primary resistance to androgen receptor (AR)-targeted therapies in CRPC. Multiple additional AR-V species are expressed in clinical CRPC, but the extent to which these may be co-expressed with AR-V7 or predict resistance is not known.


June 1, 2021  |  

Simplified sequencing of full-length isoforms in cancer on the PacBio Sequel platform

Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. In cancer proteomics studies, the identification of biomarkers from mass spectroscopy data is often limited by incomplete gene isoform expression information to support protein to transcript mapping. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences needed to discover biomarkers for early detection and cancer stratification, to fully characterize gene fusion events, and to elucidate drug resistance mechanisms. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT® Sequencing without requiring fragmentation or post-sequencing assembly. However, some cancer research applications have presented a challenge for the Iso-Seq protocol, due to the combination of limited sample input and the need to deeply sequence heterogenous samples. Here we report the optimization of the Iso-Seq library preparation protocol for the PacBio Sequel platform and its application to cancer cell lines and tumor samples. We demonstrate how loading enhancements on the higher-throughput Sequel instrument have decreased the need for size fractionation steps, reducing sample input requirements while simultaneously simplifying the sample preparation workflow and increasing the number of full-length transcripts per SMRT Cell.


June 1, 2021  |  

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and full-length cDNA extracted from the temporal lobe for two Alzheimer’s patients for 35 GWAS candidate genes. The multi-kilobase long reads allowed for phasing across the genes and detection of a broad range of genomic variants including SNPs to multi-kilobase insertions, deletions and inversions. In the full-length cDNA data we detected differential allelic isoform complexity, novel exons as well as transcript isoforms. By combining the gDNA data with full-length isoform characterization allows to build a more comprehensive view of the underlying biological disease mechanisms in Alzheimer’s disease. Using the novel PCR-free CRISPR-Cas9 enrichment method we screened several genes including the hexanucleotide repeat expansion C9ORF72 that is associated with 40% of familiar ALS cases. This method excludes any PCR bias or errors from an otherwise hard to amplify region as well as preserves the basemodication in a single molecule fashion which allows you to capture mosaicism present in the sample.


June 1, 2021  |  

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional start sites, and poly- adenylation sites. This allows for the characterization of the full complement of isoforms within targeted genes, or across an entire transcriptome. Here we present improved genome annotations for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata), using the Iso-Seq method. We present graphical user interface and command line analysis workflows for the data sets. From brain total RNA, we characterize more than 15,000 isoforms in each species, 9% and 5% of which were previously unannotated in hummingbird and zebra finch, respectively. We highlight one example where capturing full-length transcripts identifies additional exons and UTRs.


June 1, 2021  |  

De novo assembly and preliminary annotation of the Schizocardium californicum genome

Animals in the phylum Hemichordata have provided key understanding of the origins and development of body patterning and nervous system organization. However, efforts to sequence and assemble the genomes of highly heterozygous non-model organisms have proven to be difficult with traditional short read approaches. Long repetitive DNA structures, extensive structural variation between haplotypes in polyploid species, and large genome sizes are limiting factors to achieving highly contiguous genome assemblies. Here we present the highly contiguous de novo assembly and preliminary annotation of an indirect developing hemichordate genome, Schizocardium californicum, using SMRT Sequening long reads.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

SMRT-Cappable-seq reveals the complex operome of bacteria

SMRT-Cappable-seq combines the isolation of full-length prokaryotic primary transcripts with long read sequencing technology. It is the first experimental methodology to sequence entire prokaryotic transcripts. It identifies the transcription start site and termination site, thereby directly defines the operon structures genome-wide in prokaryotes. Applied to E.coli, SMRT-Cappable-seq identifies a total of ~2300 operons, among which ~900 are novel. Importantly, our result reveals a pervasive read-through of previous experimentally validated transcription termination sites. Termination read-through represents a powerful strategy to control gene expression. Taken together this data provides a first glance at the complexity of the ‘operome’ in bacteria and presents an invaluable resource for understanding gene regulation and function in bacteria.


June 1, 2021  |  

Allelic specificity of immunoglobulin heavy chain (IGH@) translocation in B-cell acute lymphoblastic leukemia (B-ALL) unveiled by long-read sequencing

Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).


June 1, 2021  |  

The role of androgen receptor variant AR-V9 in prostate cancer

The expression of androgen receptor (AR) variants is a frequent, yet poorly-understood mechanism of clinical resistance to AR-targeted therapy for castration-resistant prostate cancer (CRPC). Among the multiple AR variants expressed in CRPC, AR-V7 is considered the most clinically-relevant AR variant due to broad expression in CRPC, correlations of AR-V7 expression with clinical resistance, and growth inhibition when AR-V7 is knocked down in CRPC models. Therefore, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The aim of this study was to understand whether other AR variants are co-expressed with AR-V7 and promote resistance to AR-targeted therapies. To test this, we utilized RNA-seq to characterize AR expression in CRPC models. RNA-seq revealed the frequent coexpression of AR-V9 and AR-V7 in multiple CRPC models and metastases. Furthermore, long-read single-molecule real-time (SMRT) sequencing of AR isoforms revealed that AR-V7 and AR-V9 shared a common 3’terminal cryptic exon. To test this, we knocked down AR-V7 in prostate cancer cell lines and confirmed that AR-V9 mRNA and protein expression were also impacted. In reporter assays with AR-responsive promoters, AR-V9 functioned as a constitutive activator of androgen/AR signaling. Similarly, infection of AR-V9 lentiviral construct in LNCaP cells induced androgen-independent cell proliferation. In conclusion, these data implicate co-expression of AR-V9 with AR-V7 as an important component of constitutive AR signaling and therapeutic resistance in CRPC.


June 1, 2021  |  

Single cell isoform sequencing (scIso-Seq) identifies novel full-length mRNAs and cell type-specific expression

Single cell RNA-seq (scRNA-seq) is an emerging field for characterizing cell heterogeneity in complex tissues. However, most scRNA-seq methodologies are limited to gene count information due to short read lengths. Here, we combine the microfluidics scRNA-seq technique, Drop-Seq, with PacBio Single Molecule, Real-Time (SMRT) Sequencing to generate full-length transcript isoforms that can be confidently assigned to individual cells. We generated single cell Iso-Seq (scIso-Seq) libraries for chimp and human cerebral organoid samples on the Dolomite Nadia platform and sequenced each library with two SMRT Cells 8M on the PacBio Sequel II System. We developed a bioinformatics pipeline to identify, classify, and filter full-length isoforms at the single-cell level. We show that scIso-Seq reveals full-length isoform information not accessible using short reads that can reveal differences between cell types and amongst different species.


June 1, 2021  |  

Full-Length RNA-seq of Alzheimer brain on the PacBio Sequel II System

The PacBio Iso-Seq method produces high-quality, full-length transcripts and can characterize a whole transcriptome with a single SMRT Cell 8M. We sequenced an Alzheimer whole brain sample on a single SMRT Cell 8M on the Sequel II System. Using the Iso-Seq bioinformatics pipeline followed by SQANTI2 analysis, we detected 162,290 transcripts for 17,670 genes up to 14 kb in length. More than 60% of the transcripts are novel isoforms, the vast majority of which have supporting cage peak data and polyadenylation signals, demonstrating the utility of long-read sequencing for human disease research.


June 1, 2021  |  

A complete solution for high-quality genome annotation using the PacBio Iso-Seq method

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. We describe here the full Iso-Seq ecosystem that enables researchers to achieve high-quality genome annotations. The Iso-Seq Express workflow is a 1-day protocol that requires only 60-300 ng of total RNA and supports multiplexing of different tissues. Sequencing on a single SMRT Cell 8M on the Sequel II System produces up to 4 million full-length reads, sufficient to exhaustively characterize a whole transcriptome on the order of 15,000-17,000 genes with 100,000 or more transcripts. Most importantly, the method is supported by a maturing suite of official and community-developed tools. The SMRT Link Iso-Seq application outputs high-quality (>99% accurate), full-length transcript sequences that can optionally be mapped to a reference genome for a single SMRT Cell worth of data in 6-9 hours. For example, the SQANTI2 tool classifies Iso-Seq transcripts against a reference annotation, filters potential library artifacts, and processes information from both long read-only and short read-based quantification. IsoPhase is a tool for identifying allele-specific isoform expression. Cogent has been used to process Iso-Seq transcripts in a genome-independent manner to assess genome assemblies. Finally, IsoAnnot is an up-and-coming tool for identifying differential isoform expression across different samples. We describe how these tools complement each other and provide guidelines to make the best use out of Iso-Seq data for understanding transcriptomes.


June 1, 2021  |  

A complete solution for full-length transcript sequencing using the PacBio Sequel II System

Long read mRNA sequencing methods such as PacBio’s Iso-Seq method offers high-throughput transcriptome profiling in prokaryotic and eukaryotic cells. By avoiding the transcript assembly problem and instead sequencing full-length cDNA, Iso-Seq has emerged as the most reliable technology for annotating isoforms and, in turn, improving proteome predictions in a wide variety of organisms. Improvements in library preparation, sequencing throughput, and bioinformatics has enabled the Iso-Seq method to be complete solution for transcript characterization. The Iso-Seq Express kit is a one-day library prep requiring 60-300 ng of total RNA. The PacBio Sequel II system produces 4-5 million full-length reads, sufficient to profile a whole human transcriptome. Finally, the SQANTI2 software is a powerful tool for categorizing the complex isoforms against reference annotations, while also incorporating orthogonal information such as CAGE peak data, public RNA-seq junction data, and ORF predictions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.