Menu
July 7, 2019  |  

Complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil.

We report here the complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil in eastern Massachusetts. We assembled PacBio reads into a single closed contig with 132× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 6,890,566-bp sequence with 61.1% GC content. Copyright © 2018 Cerra et al.


July 7, 2019  |  

The odyssey of the ancestral Escherich strain through culture collections: an example of allopatric diversification.

More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding generpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations inrpoSand efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution ofE. coliof Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.


July 7, 2019  |  

Complete genome sequence of uropathogenic Escherichia coli isolate UPEC 26-1.

Urinary tract infections (UTIs) are among the most common infections in humans, predominantly caused by uropathogenic Escherichia coli (UPEC). The diverse genomes of UPEC strains mostly impede disease prevention and control measures. In this study, we comparatively analyzed the whole genome sequence of a highly virulent UPEC strain, namely UPEC 26-1, which was isolated from urine sample of a patient suffering from UTI in Korea. Whole genome analysis showed that the genome consists of one circular chromosome of 5,329,753 bp, comprising 5064 protein-coding genes, 122 RNA genes (94 tRNA, 22 rRNA and 6 ncRNA genes), and 100 pseudogenes, with an average G+C content of 50.56%. In addition, we identified 8 prophage regions comprising 5 intact, 2 incomplete and 1 questionable ones and 63 genomic islands, suggesting the possibility of horizontal gene transfer in this strain. Comparative genome analysis of UPEC 26-1 with the UPEC strain CFT073 revealed an average nucleotide identity of 99.7%. The genome comparison with CFT073 provides major differences in the genome of UPEC 26-1 that would explain its increased virulence and biofilm formation. Nineteen of the total GIs were unique to UPEC 26-1 compared to CFT073 and nine of them harbored unique genes that are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis. The data from this study will assist in future studies of UPEC strains to develop effective control measures.


July 7, 2019  |  

Paucibacter aquatile sp. nov. isolated from freshwater of the Nakdong River, Republic of Korea.

A Gram-negative, aerobic, motile, and rod-shaped bacterial strain designated CR182T was isolated from freshwater of the Nakdong River, Republic of Korea. Optimal growth conditions for this novel strain were found to be: 25-30 °C, pH 6.5-8.5, and 3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicates that the strain CR182T belongs to type strains of genus Paucibacter. Strain CR182T showed 98.0% 16S rRNA gene sequence similarity with Paucibacter oligotrophus CHU3T and formed a robust phylogenetic clade with this species. The average nucleotide identity value between strain CR182T and P. oligotrophus CHU3T was 78.4% and the genome-to-genome distance was 22.2% on average. The genomic DNA G+C content calculated from the genome sequence was 66.3 mol%. Predominant cellular fatty acids of strain CR182T were summed feature 3 (C16:1 ?7c and/or C16:1 ?6c) (31.2%) and C16:0 (16.0%). Its major respiratory quinine was ubiquinone Q-8. Its polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified phospholipids. Its genomic DNA G+C content was 66.3%. Based on data obtained from this polyphasic taxonomic study, strain CR182T represents a novel species belonging to genus Paucibacter, for which a name of P. aquatile sp. nov. is proposed. The type strain is CR182T (=?KCCM 90284T?=?NBRC 113032T).


July 7, 2019  |  

Complete genome of Halomonas aestuarii Hb3, isolated from tidal flat

Halomonas aestuarii Hb3, a moderately halophilic bacterium belonging to the class Gammaproteobacteria, was isolated from a tidal flat. Herein, we report the complete genome sequence of its strain Hb3. Its size is estimated at 3.54Mbp with a mean G+C content of 67.9%. The genome includes 3238 open reading frames, 65 transfer RNAs, and four ribosomal RNA gene operons. Genes related to the degradation of monoaromatic compounds, detoxification of arsenic, and production of polymers were identified. These features indicate that this strain may be important for ecological and industrial application.


July 7, 2019  |  

Genome sequencing to develop Paenibacillus donghaensis strain JH8T (KCTC 13049T=LMG 23780T) as a microbial fertilizer and correlation to its plant growth-promoting phenotype

Paenibacillus donghaensis JH8T (KCTC 13049T=LMG 23780T) is a Gram-positive, mesophilic, endospore-forming bacterium isolated from East Sea sediment at depth of 500m in Korea. The strain exhibited plant cell wall hydrolytic and plant growth promoting abilities. The complete genome of P. donghaensis strain JH8T contains 7602 protein-coding sequences and an average GC content of 49.7% in its chromosome (8.54Mbp). Genes encoding proteins related to the degradation of plant cell wall, nitrogen-fixation, phosphate solubilization, and synthesis of siderophore were existed in the P. donghaensis strain JH8T genome, indicating that this strain can be used as an eco-friendly microbial agent for increasing agricultural productivity.


July 7, 2019  |  

Complete genome sequence of Tsukamurella sp. MH1: A wide-chain length alkane-degrading actinomycete.

Tsukamurella sp. strain MH1, capable to use a wide range of n-alkanes as the only carbon source, was isolated from petroleum-contaminated soil (Pite?ti, Romania) and its complete genome was sequenced. The 4,922,396?bp genome contains only one circular chromosome with a G?+?C content of 71.12%, much higher than the type strains of this genus (68.4%). Based on the 16S rRNA genes sequence similarity, strain MH1 was taxonomically identified as Tsukamurella carboxydivorans. Genome analyses revealed that strain MH1 is harboring only one gene encoding for the alkB-like hydroxylase, arranged in a complete alkane monooxygenase operon. This is the first complete genome of the specie T. carboxydivorans, which will provide insights into the potential of Tsukamurella sp. MH1 and related strains for bioremediation of petroleum hydrocarbons-contaminated sites and into the environmental role of these bacteria. Copyright © 2017. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.

Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.


July 7, 2019  |  

Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies.

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01.

A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.