Menu
July 7, 2019

Analysis of the genome and mobilome of a dissimilatory arsenate reducing Aeromonas sp. O23A reveals multiple mechanisms for heavy metal resistance and metabolism.

Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (~5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained results indicate that Aeromonas sp. O23A is well-adapted to the extreme environmental conditions occurring in the Zloty Stok mine. The analysis of genome encoded traits allowed for a better understanding of the mechanisms of adaptation of the strain, also with respect to its presumable role in colonization and remediation of arsenic-contaminated waters, which may never have been discovered based on physiological analyses alone.


July 7, 2019

Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure.

The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence.


July 7, 2019

Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain.

In 1885, Theodor Escherich first described the Bacillus coli commune, which was subsequently renamed Escherichia coli. We report the complete genome sequence of this original strain (NCTC 86). The 5?144?392?bp circular chromosome encodes the genes for 4805 proteins, which include antigens, virulence factors, antimicrobial-resistance factors and secretion systems, of a commensal organism from the pre-antibiotic era. It is located in the E. coli A subgroup and is closely related to E. coli K-12 MG1655. E. coli strain NCTC 86 and the non-pathogenic K-12, C, B and HS strains share a common backbone that is largely co-linear. The exception is a large 2?803?932?bp inversion that spans the replication terminus from gmhB to clpB. Comparison with E. coli K-12 reveals 41 regions of difference (577?351?bp) distributed across the chromosome. For example, and contrary to current dogma, E. coli NCTC 86 includes a nine gene sil locus that encodes a silver-resistance efflux pump acquired before the current widespread use of silver nanoparticles as an antibacterial agent, possibly resulting from the widespread use of silver utensils and currency in Germany in the 1800s. In summary, phylogenetic comparisons with other E. coli strains confirmed that the original strain isolated by Escherich is most closely related to the non-pathogenic commensal strains. It is more distant from the root than the pathogenic organisms E. coli 042 and O157?:?H7; therefore, it is not an ancestral state for the species.


July 7, 2019

Gas fermentation: cellular engineering possibilities and scale up.

Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotrophy-the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.


July 7, 2019

Nonomuraea sp. ATCC 55076 harbours the largest actinomycete chromosome to date and the kistamicin biosynthetic gene cluster.

Glycopeptide antibiotics (GPAs) have served as potent clinical drugs and as an inspiration to chemists in various disciplines. Among known GPAs, complestatin, chloropeptin, and kistamicin are unique in that they contain an unusual indole-phenol crosslink. The mechanism of formation of this linkage is unknown, and to date, the biosynthetic gene cluster of only one GPA with an indole-phenol crosslink, that of complestatin, has been identified. Here, we report the genome sequence of the kistamicin producer Nonomuraea sp. ATCC 55076. We find that this strain harbours the largest actinobacterial chromosome to date, consisting of a single linear chromosome of ~13.1 Mbp. AntiSMASH analysis shows that ~32 biosynthetic gene clusters and ~10% of the genome are devoted to production of secondary metabolites, which include 1,6-dihydroxyphenazine and nomuricin, a new anthraquinone-type pentacyclic compound that we report herein. The kistamicin gene cluster (kis) was identified bioinformatically. A unique feature of kis is that it contains two cytochrome P450 enzymes, which likely catalyze three crosslinking reactions. These findings set the stage for examining the biosynthesis of kistamicin and its unusual indole-phenol crosslink in the future.


July 7, 2019

Characterization of the polymyxin D synthetase biosynthetic cluster and product profile of Paenibacillus polymyxa ATCC 10401.

The increasing prevalence of polymyxin-resistant bacteria has stimulated the search for improved polymyxin lipopeptides. Here we describe the sequence and product profile for polymyxin D nonribosomal peptide synthetase from Paenibacillus polymyxa ATCC 10401. The polymyxin D synthase gene cluster comprised five genes that encoded ABC transporters (pmxC and pmxD) and enzymes responsible for the biosynthesis of polymyxin D (pmxA, pmxB, and pmxE). Unlike polymyxins B and E, polymyxin D contains d-Ser at position 3 as opposed to l-a,?-diaminobutyric acid and has an l-Thr at position 7 rather than l-Leu. Module 3 of pmxE harbored an auxiliary epimerization domain that catalyzes the conversion of l-Ser to the d-form. Structural modeling suggested that the adenylation domains of module 3 in PmxE and modules 6 and 7 in PmxA could bind amino acids with larger side chains than their preferred substrate. Feeding individual amino acids into the culture media not only affected production of polymyxins D1 and D2 but also led to the incorporation of different amino acids at positions 3, 6, and 7 of polymyxin D. Interestingly, the unnatural polymyxin analogues did not show antibiotic activity against a panel of Gram-negative clinical isolates, while the natural polymyxins D1 and D2 exhibited excellent in vitro antibacterial activity and were efficacious against Klebsiella pneumoniae and Acinetobacter baumannii in a mouse blood infection model. The results demonstrate the excellent antibacterial activity of these unusual d-Ser(3) polymxyins and underscore the possibility of incorporating alternate amino acids at positions 3, 6, and 7 of polymyxin D via manipulation of the polymyxin nonribosomal biosynthetic machinery.


July 7, 2019

Natural competence rates are variable among Xylella fastidiosa strains and homologous recombination occurs in vitro between subspecies fastidiosa and multiplex.

Xylella fastidiosa, an etiological agent of emerging crop diseases around the world, is naturally competent for the uptake of DNA from the environment that is incorporated into its genome by homologous recombination. Homologous recombination between subspecies of X. fastidiosa was inferred by in silico studies and was hypothesized to cause disease emergence. However, no experimental data are available on the degree to which X. fastidiosa strains are capable of competence and whether recombination can be experimentally demonstrated between subspecies. Here, using X. fastidiosa strains from different subspecies, natural competence in 11 of 13 strains was confirmed with plasmids containing antibiotic markers flanked by homologous regions and, in three of five strains, with dead bacterial cells used as source of donor DNA. Recombination frequency differed among strains and was correlated to growth rate and twitching motility. Moreover, intersubspecific recombination occurred readily between strains of subsp. fastidiosa and multiplex, as demonstrated by movement of antibiotic resistance and green fluorescent protein from donor to recipient cells and confirmed by DNA sequencing of the flanking arms of recombinant strains. Results demonstrate that natural competence is widespread among X. fastidiosa strains and could have an impact in pathogen adaptation and disease development.


July 7, 2019

Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae.

Multidrug resistant and hypervirulent clones of Klebsiella pneumoniae are emerging pathogens. To understand the association between genotypic and phenotypic diversity in this process, we combined genomic, phylogenomic and phenotypic analysis of a diverse set of K. pneumoniae and closely related species. These species were able to use an unusually large panel of metabolic substrates for growth, many of which were shared between all strains. We analysed the substrates used by only a fraction of the strains, identified some of their genetic basis, and found that many could not be explained by the phylogeny of the strains. Puzzlingly, few traits were associated with the ecological origin of the strains. One noticeable exception was the ability to use D-arabinose, which was much more frequent in hypervirulent strains. The broad carbon and nitrogen core metabolism of K. pneumoniae might contribute to its ability to thrive in diverse environments. Accordingly, even the hypervirulent and multidrug resistant clones have the metabolic signature of ubiquitous bacteria. The apparent few metabolic differences between hypervirulent, multi-resistant and environmental strains may favour the emergence of dual-risk strains that combine resistance and hypervirulence.© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019

Generation of a collection of mutant tomato lines using pooled CRISPR libraries.

The high efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mutagenesis in plants enables the development of high-throughput mutagenesis strategies. By transforming pooled CRISPR libraries into tomato (Solanum lycopersicum), collections of mutant lines were generated with minimal transformation attempts and in a relatively short period of time. Identification of the targeted gene(s) was easily determined by sequencing the incorporated guide RNA(s) in the primary transgenic events. From a single transformation with a CRISPR library targeting the immunity-associated leucine-rich repeat subfamily XII genes, heritable mutations were recovered in 15 of the 54 genes targeted. To increase throughput, a second CRISPR library was made containing three guide RNAs per construct to target 18 putative transporter genes. This resulted in stable mutations in 15 of the 18 targeted genes, with some primary transgenic plants having as many as five mutated genes. Furthermore, the redundancy in this collection of plants allowed for the association of aberrant T0 phenotypes with the underlying targeted genes. Plants with mutations in a homolog of an Arabidopsis (Arabidopsis thaliana) boron efflux transporter displayed boron deficiency phenotypes. The strategy described here provides a technically simple yet high-throughput approach for generating a collection of lines with targeted mutations and should be applicable to any plant transformation system.© 2017 American Society of Plant Biologists. All Rights Reserved.


July 7, 2019

Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system’s great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.© 2017 John Wiley & Sons Ltd.


July 7, 2019

Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat

Bacterial leaf streak caused by Xanthomonas translucens pv. undulosa (Xtu) is an important disease of wheat (Triticum aestivum) and barley (Hordeum vulgare) worldwide. Transcription activator-like effectors (TALEs) play determinative roles in many of the plant diseases caused by the different species and pathovars of Xanthomonas, but their role in this disease has not been characterized. ICMP11055 is a highly virulent Xtu strain from Iran. The aim of this study was to better understand genetic diversity of Xtu and to assess the role of TALEs in bacterial leaf streak of wheat by comparing the genome of this strain to the recently completely sequenced genome of a U.S. Xtu strain, and to several other draft X. translucens genomes, and by carrying out mutational analyses of the TALE (tal) genes the Iranian strain might harbor. The ICMP11055 genome, including its repeat-rich tal genes, was completely sequenced using single molecule, real-time technology (Pacific Biosciences). It consists of a single circular chromosome of 4,561,583 bp, containing 3,953 genes. Whole genome alignment with the genome of the United States Xtu strain XT4699 showed two major re-arrangements, nine genomic regions unique to ICMP11055, and one region unique to XT4699. ICMP110055 harbors 26 non-TALE type III effector genes and seven tal genes, compared to 25 and eight for XT4699. The tal genes occur singly or in pairs across five scattered loci. Four are identical to tal genes in XT4699. In addition to common repeat-variable diresidues (RVDs), the tal genes of ICMP11055, like those of XT4699, encode several RVDs rarely observed in Xanthomonas, including KG, NF, Y*, YD, and YK. Insertion and deletion mutagenesis of ICMP11055 tal genes followed by genetic complementation analysis in wheat cv. Chinese Spring revealed that Tal2 and Tal4b of ICMP11055 each contribute individually to the extent of disease caused by this strain. A largely conserved ortholog of tal2 is present in XT4699, but for tal4b, only a gene with partial, fragmented RVD sequence similarity can be found. Our results lay the foundation for identification of important host genes activated by Xtu TALEs as targets for the development of disease resistant varieties.


July 7, 2019

Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae.

Colistin resistance in Klebsiella pneumoniae typically involves inactivation or mutations of chromosomal genes mgrB, pmrAB or phoPQ, but data regarding consequent modifications of LPS are limited.To examine the sequences of chromosomal loci implicated in colistin resistance and the respective LPS-derived lipid A profiles using 11 pairs of colistin-susceptible and -resistant KPC-producing K. pneumoniae clinical strains.The strains were subjected to high-throughput sequencing with Illumina HiSeq. The mgrB gene was amplified by PCR and sequenced. Lipid profiles were determined using MALDI-TOF MS.All patients were treated with colistimethate prior to the isolation of colistin-resistant strains (MIC >2?mg/L). Seven of 11 colistin-resistant strains had deletion or insertional inactivation of mgrB. Three strains, including one with an mgrB deletion, had non-synonymous pmrB mutations associated with colistin resistance. When analysed by MALDI-TOF MS, all colistin-resistant strains generated mass spectra containing ions at m/z 1955 and 1971, consistent with addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A, whereas only one of the susceptible strains displayed this lipid A phenotype.The pathway to colistin resistance in K. pneumoniae primarily involves lipid A modification with Ara4N in clinical settings.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019

Hydroxy-pentanones production by Bacillus sp. H15-1 and its complete genome sequence

Acyloins are useful organic compounds with reactive adjacent hydroxyl group and carbonyl group. Current research is usually constrained to acetoin (i.e. 3-hydroxy-2-butanone) and the biological production of other acyloins was scarcely reported. In this study, two hydroxy-pentanone metabolites (3-hydroxy-2-pentanone and 2-hydroxy-3-pentanone) of Bacillus sp. H15-1 were identified by gas chromatography–mass spectrometry and authentic standards. Then the complete genome of this strain was sequenced and de novo assembled to a single circular chromosome of 4,162,101 bp with a guanine-cytosine content of 46.3%, but no special genes were found for the biosynthesis of the hydroxy-pentanones. Since hydroxy-pentanones are the homologues of acetoin, the two genes alsD and alsS (encoding a-acetolactate decarboxylase and a-acetolactate synthase, respectively) responsible for acetoin formation in this strain were respectively expressed in Escherichia coli. The purified enzymes were found to be capable of transforming pyruvate and 2-oxobutanoate to the two hydroxy-pentanones. This study extends the knowledge on the biosynthesis of acyloins and provides helpful information for further utilizing Bacillus sp. H15-1 as a source of valuable acyloins.


July 7, 2019

In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases.

Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.