Menu
July 7, 2019  |  

Towards integration of population and comparative genomics in forest trees.

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

The evolution of orphan regions in genomes of a fungal pathogen of wheat.

Fungal plant pathogens rapidly evolve virulence on resistant hosts through mutations in genes encoding proteins that modulate the host immune responses. The mutational spectrum likely includes chromosomal rearrangements responsible for gains or losses of entire genes. However, the mechanisms creating adaptive structural variation in fungal pathogen populations are poorly understood. We used complete genome assemblies to quantify structural variants segregating in the highly polymorphic fungal wheat pathogen Zymoseptoria tritici The genetic basis of virulence in Z. tritici is complex, and populations harbor significant genetic variation for virulence; hence, we aimed to identify whether structural variation led to functional differences. We combined single-molecule real-time sequencing, genetic maps, and transcriptomics data to generate a fully assembled and annotated genome of the highly virulent field isolate 3D7. Comparative genomics analyses against the complete reference genome IPO323 identified large chromosomal inversions and the complete gain or loss of transposable-element clusters, explaining the extensive chromosomal-length polymorphisms found in this species. Both the 3D7 and IPO323 genomes harbored long tracts of sequences exclusive to one of the two genomes. These orphan regions contained 296 genes unique to the 3D7 genome and not previously known for this species. These orphan genes tended to be organized in clusters and showed evidence of mutational decay. Moreover, the orphan genes were enriched in genes encoding putative effectors and included a gene that is one of the most upregulated putative effector genes during wheat infection. Our study showed that this pathogen species harbored extensive chromosomal structure polymorphism that may drive the evolution of virulence.Pathogen outbreak populations often harbor previously unknown genes conferring virulence. Hence, a key puzzle of rapid pathogen evolution is the origin of such evolutionary novelty in genomes. Chromosomal rearrangements and structural variation in pathogen populations likely play a key role. However, identifying such polymorphism is challenging, as most genome-sequencing approaches only yield information about point mutations. We combined long-read technology and genetic maps to assemble the complete genome of a strain of a highly polymorphic fungal pathogen of wheat. Comparisons against the reference genome of the species showed substantial variation in the chromosome structure and revealed large regions unique to each assembled genome. These regions were enriched in genes encoding likely effector proteins, which are important components of pathogenicity. Our study showed that pathogen populations harbor extensive polymorphism at the chromosome level and that this polymorphism can be a source of adaptive genetic variation in pathogen evolution. Copyright © 2016 Plissonneau et al.


July 7, 2019  |  

Probabilistic viral quasispecies assembly

Viruses are pathogens that cause infectious diseases. The swarm of virions is subject to the host’s immune pressure and possibly antiviral therapy. It may escape this selective pressure and gain selective advantage by acquiring one or more of the genomic alterations: single-nucleotide variants (SNVs), loss or gain of one or more amino acids, large deletions, for example, due to alternative splicing, or recombination of different strains. Genotypic antiretroviral drug resistance testing is performed via sequencing. Next-generation sequencing (NGS) technologies revolutionized assessing viral genetic diversity experimentally. In viral quasispecies analysis, there are two main goals: the identification of low-frequency variants and haplotype assembly on a whole-genome scale. PacBio performs single-molecule sequencing. This chapter elaborates human haplotyping and its relationship to probabilistic viral haplotype reconstruction methods. Viral quasispecies assembly has the potential to replace the current de facto diversity estimation by SNV calling. With advances in library preparation, increasing sensitivity of sequencing platforms, and more sophisticated models, it might be possible to detect all or most viral strains in a single individual.


July 7, 2019  |  

Recent “omics” advances in Helicobacter pylori.

The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori “omics” and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter “omics” is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.© 2016 John Wiley & Sons Ltd.


July 7, 2019  |  

A photoreceptor contributes to the natural variation of diapause induction in Daphnia magna.

Diapause is an adaptation that allows organisms to survive harsh environmental conditions. In species occurring over broad habitat ranges, both the timing and the intensity of diapause induction can vary across populations, revealing patterns of local adaptation. Understanding the genetic architecture of this fitness-related trait would help clarify how populations adapt to their local environments. In the cyclical parthenogenetic crustacean Daphnia magna, diapause induction is a phenotypic plastic life history trait linked to sexual reproduction, as asexual females have the ability to switch to sexual reproduction and produce resting stages, their sole strategy for surviving habitat deterioration. We have previously shown that the induction of resting stage production correlates with changes in photoperiod that indicate the imminence of habitat deterioration and have identified a Quantitative Trait Locus (QTL) responsible for some of the variation in the induction of resting stages. Here, new data allows us to anchor the QTL to a large scaffold and then, using a combination of a new mapping panel, targeted association mapping and selection analysis in natural populations, to identify candidate genes within the QTL. Our results show that variation in a rhodopsin photoreceptor gene plays a significant role in the variation observed in resting stage induction. This finding provides a mechanistic explanation for the link between diapause and day-length perception that has been suggested in diverse arthropod taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Persistence of a dominant bovine lineage of group B Streptococcus reveals genomic signatures of host adaptation.

Group B Streptococcus (GBS) is a host-generalist species, most notably causing disease in humans and cattle. However, the differential adaptation of GBS to its two main hosts, and the risk of animal to human infection remain poorly understood. Despite improvements in control measures across Europe, GBS is still one of the main causative agents of bovine mastitis in Portugal. Here, by whole-genome analysis of 150 bovine GBS isolates we discovered that a single CC61 clone is spreading throughout Portuguese herds since at least the early 1990s, having virtually replaced the previous GBS population. Mutations within an iron/manganese transporter were independently acquired by all of the CC61 isolates, underlining a key adaptive strategy to persist in the bovine host. Lateral transfer of bacteriocin production and antibiotic resistance genes also underscored the contribution of the microbial ecology and genetic pool within the bovine udder environment to the success of this clone. Compared to strains of human origin, GBS evolves twice as fast in bovines and undergoes recurrent pseudogenizations of human-adapted traits. Our work provides new insights into the potentially irreversible adaptation of GBS to the bovine environment. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Genome sequence of Pseudomonas koreensis CRS05-R5, an antagonistic bacterium isolated from rice paddy field.

Pseudomonas koreensis, a new nominated Gram-negative bacterium was first reported and isolated from Korean agricultural soil (Kwon et al., 2003). CRS05-R5 (first reported as Pseudomonas sp.), which showed biocontrol ability against Sitophilus oryzae and Acidovorax avenae subsp. avenae (Liu et al., 2014), was first isolated from the rice rhizosphere in Heilongjiang province and reported in 2003 (Xie et al., 2003). Except for that, this species has been reported to produce the biosurfactant, which has biocontrol ability against Phytophthora infestans and Pythium ultimum (Hultberg et al., 2010a,b). These interesting features raise our attention on CRS05-R5. Recently, we sequenced the 16S rRNA sequence from CRS05-R5 and built the phylogenetic tree (Figure S1). Based on that, we confirmed that CRS05-R5 should be classified as P. koreensis. However, only one genome was sequenced (D26) and no detailed analysis was performed on this species. In this case, we did whole-genome sequencing on CRS05-R5, and tried to reveal the possible mechanism behind its antagonistic ability.


July 7, 2019  |  

An ethnically relevant consensus Korean reference genome is a step towards personal reference genomes.

Human genomes are routinely compared against a universal reference. However, this strategy could miss population-specific and personal genomic variations, which may be detected more efficiently using an ethnically relevant or personal reference. Here we report a hybrid assembly of a Korean reference genome (KOREF) for constructing personal and ethnic references by combining sequencing and mapping methods. We also build its consensus variome reference, providing information on millions of variants from 40 additional ethnically homogeneous genomes from the Korean Personal Genome Project. We find that the ethnically relevant consensus reference can be beneficial for efficient variant detection. Systematic comparison of human assemblies shows the importance of assembly quality, suggesting the necessity of new technologies to comprehensively map ethnic and personal genomic structure variations. In the era of large-scale population genome projects, the leveraging of ethnicity-specific genome assemblies as well as the human reference genome will accelerate mapping all human genome diversity.


July 7, 2019  |  

Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222(T).

Several species of the genus Dickeya provoke soft rot and blackleg diseases on a wide range of plants and crops. Dickeya solani has been identified as the causative agent of diseases outbreaks on potato culture in Europe for the last decade. Here, we report the complete genome of the D. solani IPO 2222(T). Using PacBio and Illumina technologies, a unique circular chromosome of 4,919,833 bp was assembled. The G?+?C content reaches 56% and the genomic sequence contains 4,059 predicted proteins. The ANI values calculated for D. solani IPO 2222(T) vs. other available D. solani genomes was over 99.9% indicating a high genetic homogeneity within D. solani species.


July 7, 2019  |  

DNA extraction protocols for whole-genome sequencing in marine organisms.

The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths’ different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.


July 7, 2019  |  

Collection and storage of HLA NGS genotyping data for the 17th International HLA and Immunogenetics Workshop.

For over 50?years, the International HLA and Immunogenetics Workshops (IHIW) have advanced the fields of histocompatibility and immunogenetics (H&I) via community sharing of technology, experience and reagents, and the establishment of ongoing collaborative projects. Held in the fall of 2017, the 17th IHIW focused on the application of next generation sequencing (NGS) technologies for clinical and research goals in the H&I fields. NGS technologies have the potential to allow dramatic insights and advances in these fields, but the scope and sheer quantity of data associated with NGS raise challenges for their analysis, collection, exchange and storage. The 17th IHIW adopted a centralized approach to these issues, and we developed the tools, services and systems to create an effective system for capturing and managing these NGS data. We worked with NGS platform and software developers to define a set of distinct but equivalent NGS typing reports that record NGS data in a uniform fashion. The 17th IHIW database applied our standards, tools and services to collect, validate and store those structured, multi-platform data in an automated fashion. We have created community resources to enable exploration of the vast store of curated sequence and allele-name data in the IPD-IMGT/HLA Database, with the goal of creating a long-term community resource that integrates these curated data with new NGS sequence and polymorphism data, for advanced analyses and applications. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Oryza glaberrima Steud.

Oryza glaberrima is the African cultivated rice species, domesticated from its wild ancestor by farmers living in Inland Delta of Niger River. Several studies indicated that it has extremely narrow genetic diversity compared to both its wild progenitor, Oryza barthii and the Asian rice, Oryza sativa which can mainly be attributed to a severe domestication bottleneck. Despite its scarcity in farmer’s field due to its low yield potential, high shattering and lodging susceptibility, O. glaberrima is of great value not only to Africa but also globally. Perhaps its greatest contribution to regional and global food security is as a source of genes, as it possesses resistance/tolerance to various biotic and abiotic stresses. It also has unique starch-related traits which give it good cooking and eating properties. Advances in DNA sequencing have provided useful genomic resources for African rice, key among them being whole genome sequences. Genomic tools are enabling greater understanding of the useful functional diversity found in this species. These advances have potential of addressing some of the undesirable attributes found in this species which have led to its continued replacement by Asian rice. Development of new generation of rice varieties for African farmers will therefore require the adoption of advanced molecular breeding tools as these will allow efficient utilization of the wealth and resilience found in African rice in rice improvement.


July 7, 2019  |  

Whole genome sequence and phenotypic characterization of a Cbm+ serotype e strain of Streptococcus mutans.

We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra-oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall-anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram-positive bacteria. When compared with the UA159 type strain, phenotypic characterization of LAR01 revealed increased biofilm formation in the presence of either glucose or sucrose but similar abilities to withstand acid and oxidative stresses. LAR01 was unable to inhibit the growth of Strpetococcus gordonii, which is consistent with the genomic data that indicate absence of mutacins that can kill mitis streptococci. On the other hand, LAR01 effectively inhibited growth of other S. mutans strains, suggesting that it may be specialized to outcompete strains from its own species. In vitro and in vivo studies using mutational and heterologous expression approaches revealed that Cbm is a virulence factor of S. mutans by mediating binding to extracellular matrix proteins and intracellular invasion. Collectively, the whole genome sequence analysis and phenotypic characterization of LAR01 provides new insights on the virulence properties of S. mutans and grants further opportunities to understand the genomic fluidity of this important human pathogen.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.