April 21, 2020  |  

Biogeography and Microscale Diversity Shape the Biosynthetic Potential of Fungus-growing Ant-associated Pseudonocardia

The geographic and phylogenetic scale of ecologically relevant microbial diversity is still poorly understood. Using a model mutualism, fungus-growing ants and their defensive bacterial associate Pseudonocardia, we analyzed genetic diversity and biosynthetic potential in 46 strains isolated from ant colonies in a 20km transect near Barro Colorado Island in Panama. Despite an average pairwise core genome similarity of greater than 99%, population genomic analysis revealed several distinct bacterial populations matching ant host geographic distribution. We identified both genetic diversity signatures and divergent genes distinct to each lineage. We also identify natural product biosynthesis clusters specific to isolation locations. These geographic patterns were observable despite the populations living in close proximity to each other and provides evidence of ongoing genetic exchange. Our results add to the growing body of literature suggesting that variation in traits of interest can be found at extremely fine phylogenetic scales.


April 21, 2020  |  

Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy Rice as an Evolutionary Game.

Crop weediness, especially that of weedy rice (Oryza sativa f. spontanea), remains mysterious. Weedy rice possesses robust ecological adaptability; however, how this strain originated and gradually formed proprietary genetic features remains unclear. Here, we demonstrate that weedy rice at Asian high latitudes (WRAH) is phylogenetically well defined and possesses unselected genomic characteristics in many divergence regions between weedy and cultivated rice. We also identified novel quantitative trait loci underlying weedy-specific traits, and revealed that a genome block on the end of chromosome 1 is associated with rice weediness. To identify the genomic modifications underlying weedy rice evolution, we generated the first de novo assembly of a high-quality weedy rice genome (WR04-6), and conducted a comparative genomics study between WR04-6 with other rice reference genomes. Multiple lines of evidence, including the results of demographic scenario comparisons, suggest that differentiation between weedy rice and cultivated rice was initiated by genetic improvement of cultivated rice and that the essence of weediness arose through semi-domestication. A plant height model further implied that the origin of WRAH can be modeled as an evolutionary game and indicated that strategy-based selection driven by fitness shaped its genomic diversity.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis

Ginkgo biloba, which contains flavonoids as bioactive components, is widely used in traditional Chinese medicine. Increasing the flavonoid production of medicinal plants through genetic engineering generally focuses on the key genes involved in flavonoid biosynthesis. However, the molecular mechanisms underlying such biosynthesis are not yet well understood. To understand these mechanisms, a combination of second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing was applied to G. biloba. Eight tissues were sampled for SMRT sequencing to generate a high-quality, full-length transcriptome database. From 23.36 Gb clean reads, 12,954 alternative polyadenylation events, 12,290 alternative splicing events, 929 fusion transcripts, 2,286 novel transcripts, and 1,270 lncRNAs were predicted by removing redundant reads. Further studies reveal that 7 AS, 5 lncRNA, and 6 fusion gene events were identified in flavonoid biosynthesis. A total of 12 gene modules were revealed to be involved in flavonoid metabolism structural genes and transcription factors by constructing co-expression networks. Weighted gene coexpression network analysis (WGCNA) analysis reveals that some hub genes operate during the biosynthesis by identifying transcription factors (TFs) and structure genes. Seven key hub genes were also identified by analyzing the correlation between gene expression level and flavonoids content. The results highlight the importance of SMRT sequencing of the full-length transcriptome in improving genome annotation and elucidating the gene regulation of flavonoid biosynthesis in G. biloba by providing a comprehensive set of reference transcripts.


April 21, 2020  |  

Genomic Analyses Reveal Evidence of Independent Evolution, Demographic History, and Extreme Environment Adaptation of Tibetan Plateau Agaricus bisporus.

Agaricus bisporus distributed in the Tibetan Plateau of China has high-stress resistance that is valuable for breeding improvements. However, its evolutionary history, specialization, and adaptation to the extreme Tibetan Plateau environment are largely unknown. Here, we performed de novo genome sequencing of a representative Tibetan Plateau wild strain ABM and comparative genomic analysis with the reported European strain H97 and H39. The assembled ABM genome was 30.4 Mb in size, and comprised 8,562 protein-coding genes. The ABM genome shared highly conserved syntenic blocks and a few inversions with H97 and H39. The phylogenetic tree constructed by 1,276 single-copy orthologous genes in nine fungal species showed that the Tibetan Plateau and European A. bisporus diverged ~5.5 million years ago. Population genomic analysis using genome resequencing of 29 strains revealed that the Tibetan Plateau population underwent significant differentiation from the European and American populations and evolved independently, and the global climate changes critically shaped the demographic history of the Tibetan Plateau population. Moreover, we identified key genes that are related to the cell wall and membrane system, and the development and defense systems regulated A. bisporus adapting to the harsh Tibetan Plateau environment. These findings highlight the value of genomic data in assessing the evolution and adaptation of mushrooms and will enhance future genetic improvements of A. bisporus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.