Menu
September 22, 2019  |  

Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae

Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 21022T genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant diff erences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these diff erences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.


September 22, 2019  |  

Secretome analysis identifies potential pathogenicity/virulence factors of Tilletia indica, a quarantined fungal pathogen inciting Karnal bunt disease in wheat.

Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host-pathogen genetic interactions.

Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host-pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host-pathogen interactions.


September 22, 2019  |  

Gene presence-absence polymorphism in castrating anther-smut fungi: Recent gene Gains and Phylogeographic Structure.

Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.


September 22, 2019  |  

Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe.

Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.


September 22, 2019  |  

Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.

Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare).The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome.The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a “one-speed” genome that differs in its architecture and (co-)evolutionary pattern from the “two-speed” genomes reported for several other filamentous phytopathogens.


September 22, 2019  |  

Genome-based evolutionary history of Pseudomonas spp.

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina, and Morchella septimelata.

Draft genomes of the species Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina and Morchella septimelata are presented. Both mating types (MAT1-1 and MAT1-2) of Cercospora beticola are included. Two strains of Coleophoma cylindrospora that produce sulfated homotyrosine echinocandin variants, FR209602, FR220897 and FR220899 are presented. The sequencing of Aspergillus mulundensis, Coleophoma cylindrospora and Phialophora cf. hyalina has enabled mapping of the gene clusters encoding the chemical diversity from the echinocandin pathways, providing data that reveals the complexity of secondary metabolism in these different species. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity (in some cases), biology and toxin production of these economically important fungi.


September 22, 2019  |  

Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium).

Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019  |  

Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans.

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.


September 22, 2019  |  

Fusarium species complex causing Pokkah Boeng in China

Sugarcane is one of the most important crops for sugar production in sugarcane-growing areas. Many biotic and abiotic stresses affected the sugarcane production which leads to severe losses. Pokkah boeng is now playing a very important role due to its economic threats. Currently, the occurrence and rigorousness of pokkah boeng disease have been spread like wildfire from major sugarcane-growing countries. Pokkah boeng is a fungal disease that can cause serious yield losses in susceptible varieties. Infection of the disease is caused either by spores or ascospores. It may cause serious yield losses in commercial plantings. However, there have been many reported outbreaks of the disease which have looked spectacular but have caused trade and industry loss. Fusarium species complex is the major causal agent of this disease around the world, but some researchers have documented the increased importance of Fusarium. Three Fusarium species have been identified to cause the sugarcane pokkah boeng disease in China. Moreover, Fusarium may be accompanied of its mycotoxin production, genomic sequencing, and association with nitrogen application in China. Many studies on disease investigations, breeding of disease-resistant varieties, and strategy of disease control have also been carried out in China.


September 22, 2019  |  

The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile.

Variovorax is a metabolically diverse genus of plant growth-promoting rhizobacteria (PGPR) that engages in mutually beneficial interactions between plants and microbes. Unlike most PGPR, Variovorax cannot synthesize the phytohormone indole-3-acetic acid (IAA) via tryptophan. However, we found that V. boronicumulans strain CGMCC 4969 could produce IAA using indole-3-acetonitrile (IAN) as the precursor. Thus, in the present study, the IAA synthesis mechanism of V. boronicumulans CGMCC 4969 was investigated. V. boronicumulans CGMCC 4969 metabolized IAN to IAA through both a nitrilase-dependent pathway and a nitrile hydratase (NHase) and amidase-dependent pathway. Cobalt enhanced the metabolic flux via the NHase/amidase, by which IAN was rapidly converted to indole-3-acetamide (IAM) and in turn to IAA. IAN stimulated the metabolic flux via the nitrilase, by which IAN was rapidly converted to IAA. Subsequently, the IAA was degraded. V. boronicumulans CGMCC 4969 could use IAN as the sole carbon and nitrogen source for growth. Genome sequencing confirmed the IAA synthesis pathways. Gene cloning and overexpression in Escherichia coli indicated that NitA has the nitrilase activity, and IamA has the amidase activity to respectively transform IAN and IAM to IAA. Interestingly, NitA showed a close genetic relationship with the nitrilase of the phytopathogen Pseudomonas syringae Quantitative PCR analysis indicated that the NHase/amidase system is constitutively expressed, whereas the nitrilase is inducible. The present study helps our understanding of the versatile functions of Variovorax nitrile-converting enzymes that mediate IAA synthesis and the interactions between plants and these bacteria.IMPORTANCE We demonstrated that Variovorax boronicumulans CGMCC 4969 has two enzymatic systems-nitrilase and nitrile hydratase/amidase-that convert indole-3-acetonitrile (IAN) to the important plant hormone indole-3-acetic acid (IAA). The two IAA synthesis systems have very different regulatory mechanisms, affecting the IAA synthesis rate and duration. The nitrilase was induced by IAN, which was rapidly converted to IAA; subsequently IAA was rapidly consumed for cell growth. The NHase and amidase system was constitutively expressed and slowly but continuously synthesized IAA. In addition to synthesizing IAA from IAN, CGMCC 4969 has a rapid IAA degradation system, which would be helpful for a host plant to eliminate redundant IAA. This study indicates that the plant growth-promoting rhizobacterium V. boronicumulans CGMCC 4969 has the potential to be used by host plants to regulate the IAA level. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3).

Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816?bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.


September 22, 2019  |  

Complete sequence of kenaf (Hibiscus cannabinus) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants.

Plant mitochondrial (mt) genomes are species specific due to the vast of foreign DNA migration and frequent recombination of repeated sequences. Sequencing of the mt genome of kenaf (Hibiscus cannabinus) is essential for elucidating its evolutionary characteristics. In the present study, single-molecule real-time sequencing technology (SMRT) was used to sequence the complete mt genome of kenaf. Results showed that the complete kenaf mt genome was 569,915?bp long and consisted of 62 genes, including 36 protein-coding, 3 rRNA and 23 tRNA genes. Twenty-five introns were found among nine of the 36 protein-coding genes, and five introns were trans-spliced. A comparative analysis with other plant mt genomes showed that four syntenic gene clusters were conserved in all plant mtDNAs. Fifteen chloroplast-derived fragments were strongly associated with mt genes, including the intact sequences of the chloroplast genes psaA, ndhB and rps7. According to the plant mt genome evolution analysis, some ribosomal protein genes and succinate dehydrogenase genes were frequently lost during the evolution of angiosperms. Our data suggest that the kenaf mt genome retained evolutionarily conserved characteristics. Overall, the complete sequencing of the kenaf mt genome provides additional information and enhances our better understanding of mt genomic evolution across angiosperms.


September 22, 2019  |  

Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains.

Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.