Menu
September 22, 2019  |  

Genome sequencing of Streptomyces atratus SCSIOZH16 and activation production of nocardamine via metabolic engineering.

The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs) barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine) compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.


September 22, 2019  |  

High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant.

Salvia splendens Ker-Gawler, scarlet or tropical sage, is a tender herbaceous perennial widely introduced and seen in public gardens all over the world. With few molecular resources, breeding is still restricted to traditional phenotypic selection, and the genetic mechanisms underlying phenotypic variation remain unknown. Hence, a high-quality reference genome will be very valuable for marker-assisted breeding, genome editing, and molecular genetics.We generated 66 Gb and 37 Gb of raw DNA sequences, respectively, from whole-genome sequencing of a largely homozygous scarlet sage inbred line using Pacific Biosciences (PacBio) single-molecule real-time and Illumina HiSeq sequencing platforms. The PacBio de novo assembly yielded a final genome with a scaffold N50 size of 3.12 Mb and a total length of 808 Mb. The repetitive sequences identified accounted for 57.52% of the genome sequence, and ?54,008 protein-coding genes were predicted collectively with ab initio and homology-based gene prediction from the masked genome. The divergence time between S. splendens and Salvia miltiorrhiza was estimated at 28.21 million years ago (Mya). Moreover, 3,797 species-specific genes and 1,187 expanded gene families were identified for the scarlet sage genome.We provide the first genome sequence and gene annotation for the scarlet sage. The availability of these resources will be of great importance for further breeding strategies, genome editing, and comparative genomics among related species.


September 22, 2019  |  

Genome mining-mediated discovery of a new avermipeptin analogue in Streptomyces actuosus ATCC 25421.

Streptomyces actuosus ATCC 25421 was famous for producing thiopeptide nosiheptide, which has widely been used as a feed additive for the promotion of animal growth. Herein, we report the complete genome sequence of S. actuosus ATCC 25421, which consists of an 8,145,579-bp circular chromosome with a G+C content of 72.53?% containing 7?536 protein-coding genes. The antiSMASH 3.0 program was used to identify 49 biosynthetic gene clusters for putative secondary metabolites, including a putative lantipeptide gene cluster that showed 85?% similarity to the reported informatipeptin biosynthetic gene cluster, indicating that the putative lantipeptide gene cluster has the ability to generate the informatipeptin analogue. Compared with avermipeptin, the lantipeptide precursor peptide (termed avermipeptin B) from S. actuosus ATCC 25421 contains a 14-aa leader peptide and a 24-aa core peptide, in which Ile15 was different from Val15 in avermipeptin. We also deduced the structure and the biosynthetic mechanism of avermipeptin B. Heterologous expression of the avermipeptin B biosynthetic gene cluster in S. lividans TK24 was characterized by high-resolution mass spectrometry (ESI-MS/MS). Finally, we found that avermipeptin B displayed strong activity against Gram-positive strains. The genome sequence reported here can encourage us to mine novel secondary metabolites and investigate their biosynthetic mechanism in the future.


September 22, 2019  |  

The Chara genome: Secondary complexity and implications for plant terrestrialization.

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Nine draft genome sequences of Claviceps purpurea s.lat., including C. arundinis, C. humidiphila, and C. cf. spartinae, pseudomolecules for the pitch canker pathogen Fusarium circinatum, draft genome of Davidsoniella eucalypti, Grosmannia galeiformis, Quambalaria eucalypti, and Teratosphaeria destructans.

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.


September 22, 2019  |  

A reference genome of the Chinese hamster based on a hybrid assembly strategy.

Accurate and complete genome sequences are essential in biotechnology to facilitate genome-based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short-read-based assemblies. Here, we completely resequenced C. griseus using single molecule real time sequencing and merged this with Illumina-based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up- and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important Chinese hamster ovary cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.© 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


September 22, 2019  |  

Genetic and biochemical characterization of 5-hydroxypicolinic acid metabolism in Alcaligenes faecalis JQ135.

5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of the 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent FAD-dependent monooxygenase and shared low identity (only 28-31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH-dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 µM and 37.8 µM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.Importance Unlike the benzene ring, the uneven distribution of the electron density of pyridine ring influences the positional reactivity and the interaction with enzymes, e.g., the ortho and para oxidation are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylation of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution.

Reprogramming of the NRPS/PKS assembly line is an attractive method for the production of new bioactive molecules. However, it is usually hampered by the loss of intimate domain/module interactions required for the precise control of chain transfer and elongation reactions. In this study, we first establish heterologous expression systems of the unique antimycin-type cyclic depsipeptides: JBIR-06 (tri-lactone) and neoantimycin (tetra-lactone), and engineer their biosyntheses by taking advantage of bioinformatic analyses and evolutionary insights. As a result, we successfully accomplish three manipulations: (i) ring contraction of neoantimycin (from tetra-lactone to tri-lactone), (ii) ring expansion of JBIR-06 (from tri-lactone to tetra-lactone), and (iii) alkyl chain diversification of JBIR-06 by the incorporation of various alkylmalonyl-CoA extender units, to generate a set of unnatural derivatives in practical yields. This study presents a useful strategy for engineering NRPS-PKS module enzymes, based on nature’s diversification of the domain and module organizations.


September 22, 2019  |  

Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs.

Classical swine fever virus (CSFV) infection causes most variable clinical syndromes from chronic or latent infection to acute death, and it is generally acknowledged that the course of disease is affected by both virus and host factors. To compare host immune responses to differentially virulent CSFV strains in pigs, fifteen 8-week-old specific-pathogen-free pigs were randomly divided into four groups and inoculated with the CSFV Shimen strain (a highly virulent strain), the HLJZZ2014 strain (a moderately virulent strains), C-strain (an avirulent strain), and DMEM (mock control), respectively. Infection with the Shimen or HLJZZ2014 strain resulted in fever, clinical signs and histopathological lesions, which were not observed in the C-strain-inoculated pigs, though low viral genome copies were detected in the peripheral blood and tissue samples. The data showed that the virulence of the strains affected the outcome of duration and intensity of the disease rather than the tissue tropism of the virus. Furthermore, leukopenia, lymphocytopenia, differentiation of T-cells, and the secretion of cytokines associated with inflammation or apoptosis such as interferon alpha (IFN-a), tumor necrosis factor alpha (TNF-a), interleukin 2 (IL-2), IL-4, IL-6, and IL-10 were induced by the virulent CSFV infection, the differences reflected in onset and extent of the regulation. Taken together, our results revealed that the major differences among the three strains resided in the kinetics of host response to the infection: severe and immediate with the highly virulent strain, while progressive and delayed with the moderately virulent one. This comparative study will help to dissect the pathogenesis of CSFV. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

First draft genome assembly of the Argane tree (Argania spinosa)

Background: The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. Results: In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. Conclusion: The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes.


September 22, 2019  |  

Integration of genomic data with NMR analysis enables assignment of the full stereostructure of neaumycin B, a potent inhibitor of glioblastoma from a marine-derived Micromonospora.

The microbial metabolites known as the macrolides are some of the most successful natural products used to treat infectious and immune diseases. Describing the structures of these complex metabolites, however, is often extremely difficult due to the presence of multiple stereogenic centers inherent in this class of polyketide-derived metabolites. With the availability of genome sequence data and a better understanding of the molecular genetics of natural product biosynthesis, it is now possible to use bioinformatic approaches in tandem with spectroscopic tools to assign the full stereostructures of these complex metabolites. In our quest to discover and develop new agents for the treatment of cancer, we observed the production of a highly cytotoxic macrolide, neaumycin B, by a marine-derived actinomycete bacterium of the genus Micromonospora. Neaumycin B is a complex polycyclic macrolide possessing 19 asymmetric centers, usually requiring selective degradation, crystallization, derivatization, X-ray diffraction analysis, synthesis, or other time-consuming approaches to assign the complete stereostructure. As an alternative approach, we sequenced the genome of the producing strain and identified the neaumycin gene cluster ( neu). By integrating the known stereospecificities of biosynthetic enzymes with comprehensive NMR analysis, the full stereostructure of neaumycin B was confidently assigned. This approach exemplifies how mining gene cluster information while integrating NMR-based structure data can achieve rapid, efficient, and accurate stereostructural assignments for complex macrolides.


September 22, 2019  |  

Molecular basis for the final oxidative rearrangement steps in chartreusin biosynthesis.

Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final a-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.


September 22, 2019  |  

Characterization of Haemophilus parasuis serovar 2 CL120103, a moderately virulent strain in China

Haemophilus parasuis is an important bacterium affecting pigs, causing Glässer’s disease. To further characterize this species, we determined the complete genomic sequence of H. parasuis CL120103, which was isolated from diseased pigs. The strain H. parasuis CL120103 was identified as serovar 2. The size of the largest scaffold is 2,326,318 bp and contains 145 large contigs, with the N50 contig being 20,573 bp in length. The complete genome of H. parasuis CL120103 is 2,305,354 bp in length with 39.97% GC content and contains 2227 protein-coding genes, 19 ribosomal rRNA operons and 60 tRNA genes. Sequence similarity of the genome of H. parasuis CL120103 to the previously sequenced genome of H. parasuis was up to 96% and query cover to 86%. Annotation of the genome of H. parasuis CL120103 identified a number of genes encoding potential virulence factors. These virulence factors are involved in metabolism, adhesion, secretion and LPS biosynthesis. These related genes pave the way to better understand mechanisms underlying metabolic capabilities. The comprehensive genetic and phylogenetic analysis shows that H. parasuis is closely related to Actinobacillus pleuropneumoniae and provides a foundation for future experimental confirmation of the virulence and pathogen-host interactions in H. parasuis.


September 22, 2019  |  

Assembly and comparative analysis of the complete mitochondrial genome sequence of Sophora japonica ‘JinhuaiJ2’.

Sophora japonica L. (Faboideae, Leguminosae) is an important traditional Chinese herb with a long history of cultivation. Its flower buds and fruits contain abundant flavonoids, and therefore, the plants are cultivated for the industrial extraction of rutin. Here, we determined the complete nucleotide sequence of the mitochondrial genome of S. japonica ‘JinhuaiJ2’, the most widely planted variety in Guangxi region of China. The total length of the mtDNA sequence is 484,916 bp, with a GC content of 45.4%. Sophora japonica mtDNA harbors 32 known protein-coding genes, 17 tRNA genes, and three rRNA genes with 17 cis-spliced and five trans-spliced introns disrupting eight protein-coding genes. The gene coding and intron regions, and intergenic spacers account for 7.5%, 5.8% and 86.7% of the genome, respectively. The gene profile of S. japonica mitogenome differs from that of the other Faboideae species by only one or two gene gains or losses. Four of the 17 cis-spliced introns showed distinct length variations in the Faboideae, which could be attributed to the homologous recombination of the short repeats measuring a few bases located precisely at the edges of the putative deletions. This reflects the importance of small repeats in the sequence evolution in Faboideae mitogenomes. Repeated sequences of S. japonica mitogenome are mainly composed of small repeats, with only 20 medium-sized repeats, and one large repeat, adding up to 4% of its mitogenome length. Among the 25 pseudogene fragments detected in the intergenic spacer regions, the two largest ones and their corresponding functional gene copies located in two different sets of medium-sized repeats, point to their origins from homologous recombinations. As we further observed the recombined reads associated with the longest repeats of 2,160 bp with the PacBio long read data set of just 15 × in depth, repeat mediated homologous recombinations may play important role in the mitogenomic evolution of S. japonica. Our study provides insightful knowledge to the genetic background of this important herb species and the mitogenomic evolution in the Faboideae species.


September 22, 2019  |  

Natural selection in bats with historical exposure to white-nose syndrome

Hibernation allows animals to survive periods of resource scarcity by reducing their energy expenditure through decreased metabolism. However, hibernators become susceptible to psychrophilic pathogens if they cannot mount an efficient immune response to infection. While Nearctic bats infected with white-nose syndrome (WNS) suffer high mortality, related Palearctic taxa are better able to survive the disease than their Nearctic counterparts. We hypothesised that WNS exerted historical selective pressure in Palearctic bats, resulting in genomic changes that promote infection tolerance.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.