fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences…

Read More »

Tuesday, June 1, 2021

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further…

Read More »

Friday, February 5, 2021

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)

Read More »

Friday, February 5, 2021

AGBT PacBio Workshop: Full workshop recording

PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.

Read More »

Friday, February 5, 2021

PAG PacBio Workshop: SMRT Sequencing for complete genomes

PacBio CSO Jonas Korlach kicks off the PAG 2017 SMRT Sequencing workshop with acknowledgement of the remarkable work scientists have done with long-read sequencing technology, culminating in more than 2,000 papers so far. Also: Sequel System data, new chemistry and software release, longer libraries, and more.

Read More »

Friday, February 5, 2021

Video: Using the Integrative Genomics Viewer (IGV) to visualize PacBio long-read SMRT Sequencing data

In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: Towards precision medicine

Euan Ashley from Stanford University started with the premise that while current efforts in the field of genomics medicine address 30% of patient cases, there’s a need for new approaches to make sense of the remaining 70%. Toward that end, he said that accurately calling structural variants is a major need. In one translational research example, Ashley said that SMRT Sequencing with the Sequel System allowed his team to identify six potentially causative genes in an individual with complex and varied symptoms; one gene was associated with Carney syndrome, which was a match for the person’s physiology and was later…

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: Identification and characterization of informative genetic structural variants for neurodegenerative diseases

Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: A future of high-quality genomes, transcriptomes, and epigenomes

Jonas Korlach spoke about recent SMRT Sequencing updates, such as latest Sequel System chemistry release (1.2.1) and updates to the Integrative Genomics Viewer that’s now update optimized for PacBio data. He presented the recent data release of structural variation detected in the NA12878 genome, including many more insertions and deletions than short-read-based technologies were able to find.

Read More »

Friday, February 5, 2021

PAG PacBio Workshop: Introducing 5 new high-quality PacBio genome assemblies for rice to help solve the 10-billion people question

At PAG 2017, Rod Wing presented five new, high-quality rice genome assemblies developed with SMRT Sequencing, including one that has eight complete chromosomes including centromeres. He also offered an early look at data generated with the Sequel System for a new assembly underway. This work is done with the goal of developing rice varieties that will be better suited to feeding a rapidly growing global population.

Read More »

Friday, February 5, 2021

PAG PacBio Workshop: Genome assembly and molecular genetics of the dengue, yellow fever, and zika vector Aedes aegypti

In this PAG 2017 presentation, Ben Matthews describes a new genome assembly for Aedes aegypti, the mosquito responsible for spreading Zika virus, yellow fever, and other infectious diseases. By using PacBio long-read sequencing, scientists produced an assembly that is much more complete and contiguous than a previous assembly; 7,500 transcripts map to the new contigs but not to the old assembly. The genome is important for designing guide RNAs for CRISPR, understanding resistance to mosquito repellants, and much more.

Read More »

Friday, February 5, 2021

PAG PacBio Workshop: Comparative analyses of next generation technologies for generating chromosome-level reference genome assemblies

At PAG 2017, Rockefeller University’s Erich Jarvis offered an in-depth comparison of methods for generating highly contiguous genome assemblies, using hummingbird as the basis to evaluate a number of sequencing and scaffolding technologies. Analyses include gene content, error rate, chromosome metrics, and more. Plus: a long-read look at four genes associated with vocal learning.

Read More »

1 2 3

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »