Menu
July 7, 2019  |  

Comparative sequence analysis of multidrug-resistant IncA/C plasmids from Salmonella enterica

Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in plasmids, advances in plasmid sequencing, and phylogenetic analyses, and important insights about how MDR evolution occurs across diverse serotypes from different animal sources, particularly in agricultural settings where antimicrobial drug use practices vary.


July 7, 2019  |  

Complete genome sequence of Sulfuriferula sp. strain AH1, a sulfur-oxidizing autotroph isolated from weathered mine tailings from the Duluth Complex in Minnesota.

We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance. Copyright © 2017 Jones et al.


July 7, 2019  |  

The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence.

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.© 2017 The Authors.


July 7, 2019  |  

Draft genome sequences of Trichophyton rubrum CMCC(F)T1i and Trichophyton violaceum CMCC(F)T3l by Illumina 2000 and Pacific Biosciences.

One strain of Trichophyton rubrum CMCC(F)T1i (=CBS 139224) isolated from onychomycosis and one strain of Trichophyton violaceum CMCC(F)T3l (=CBS 141829) isolated from tinea capitis in China were whole-genome sequenced by Illumina/Solexa, while the former was also sequenced by Pacific Biosciences sequencing in parallel. Copyright © 2017 Zhan et al.


July 7, 2019  |  

The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance.

Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat’s ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance.

Bacillus flexus KLBMP 4941 is a halotolerant endophyte isolated from the halophyte Limonium sinense. This strain can improve host seedling growth under salt stress conditions. We here report the complete genome information of endophyte KLBMP 4941. It has a circular chromosome and two plasmids for a total genome 4,104,242 bp in size with a G+C content of 38.09%. Genes related to plant growth promotion (PGP), such as those associated with nitrogen fixation, siderophore, spermidine, and acetoin synthesis were found in the KLBMP 4941 genome. Some genes responsible for high salinity tolerance, like genes associated with the Na(+)/H(+) antiporter, glycine betaine transporter, and betaine-aldehyde dehydrogenase were also found in the KLBMP 4941 genome. The genome analysis will provide better understanding of the mechanisms underlying the promotion of plant growth in strain KLBMP 4941 under salt stress conditions and its ability to adapt to coastal salt marsh habitats, and provide a basis for its further biotechnological applications in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome-wide discovery of genes required for capsule production by uropathogenic Escherichia coli.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant. Copyright © 2017 Goh et al.


July 7, 2019  |  

Dissemination and characteristics of a novel plasmid-encoded carbapenem-hydrolyzing class D beta-lactamase, OXA-436 from four patients involving six different hospitals in Denmark.

The diversity of OXA-48-like carbapenemases is continually expanding. In this study, we describe the dissemination and characteristics of a novel carbapenem-hydrolyzing class D carbapenemase (CHDL) named OXA-436. In total, six OXA-436-producing Enterobacteriaceae isolates including Enterobacter asburiae (n=3), Citrobacter freundii (n=2) and Klebsiella pneumoniae (n=1) were identified in four patients in the period between September 2013 and April 2015. All three species of OXA-436-producing Enterobacteriaceae were found in one patient. The amino acid sequence of OXA-436 showed 90.4-92.8% identity to other acquired OXA-48-like variants. Expression of OXA-436 in Escherichia coli and kinetic analysis of purified OXA-436 revealed an activity profile similar to OXA-48 and OXA-181 with activity against penicillins including temocillin, limited or no activity against extended-spectrum cephalosporins and activity against carbapenems. The blaOXA-436 gene was located on a conjugative ~314 kb IncHI2/IncHI2A plasmid belonging to pMLST ST1, in a region surrounded by chromosomal genes previously identified adjacent to blaOXA-genes in Shewanella spp. In conclusion, OXA-436 is a novel CHDL with similar functional properties as OXA-48-like CHDLs. The described geographical spread among different Enterobacteriaceae and plasmid location of blaOXA-436 illustrates its potential for further dissemination. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.

The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17?×?10-8 ~3.87?×?10-8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.


July 7, 2019  |  

Hidden genetic variation shapes the structure of functional elements in Drosophila.

Mutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, although the fragmented nature of most contemporary assemblies obscures them. To discover such mutations, we assembled the first new reference-quality genome of Drosophila melanogaster since its initial sequencing. By comparing this new genome to the existing D. melanogaster assembly, we created a structural variant map of unprecedented resolution and identified extensive genetic variation that has remained hidden until now. Many of these variants constitute candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that amplifies the expression of detoxification-related genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high-quality reference genomes are to deciphering phenotypes.


July 7, 2019  |  

Novel FANCI mutations in Fanconi anemia with VACTERL association.

Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.


July 7, 2019  |  

Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities.

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.