Menu
September 22, 2019  |  

Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes

The potential of newly isolated Lactobacillus amylolyticus L6 as probiotics was investigated based on the whole genome sequence and corresponding phenotypes. With Lactobacillus acidophilus NCFM as positive control, several established methods of evaluating potential probiotics were performed on L. amylolyticus L6. The results indicated that L. amylolyticus L6 retained higher viability in human gastrointestinal (GI) tract and it also had strong inhibitory effect on pathogenic bacteria. Meanwhile, the candidate probiotics exhibited similar adhesion level as that of L. acidophilus NCFM in vitro test. As for carbohydrate utilization profile, L. amylolyticus L6 had high ability of utilizing raffinose and stachyose which were known as flatulence factors in soybean products. And this strain could also utilize starch. Besides, the mechanisms of probiotic and metabolic properties for L. amylolyticus L6 were further illustrated with the identification of related genes through the analysis of genome sequence. Therefore, we proposed that L. amylolyticus L6 have the potential to be used as probiotics from phenotypes to genotypes. And it is the first time that the complete genome sequence of L. amylolyticus L6 and the potential of this strain to be used as probiotics were reported in this study.


September 22, 2019  |  

IMSindel: An accurate intermediate-size indel detection tool incorporating de novo assembly and gapped global-local alignment with split read analysis.

Insertions and deletions (indels) have been implicated in dozens of human diseases through the radical alteration of gene function by short frameshift indels as well as long indels. However, the accurate detection of these indels from next-generation sequencing data is still challenging. This is particularly true for intermediate-size indels (=50?bp), due to the short DNA sequencing reads. Here, we developed a new method that predicts intermediate-size indels using BWA soft-clipped fragments (unmatched fragments in partially mapped reads) and unmapped reads. We report the performance comparison of our method, GATK, PINDEL and ScanIndel, using whole exome sequencing data from the same samples. False positive and false negative counts were determined through Sanger sequencing of all predicted indels across these four methods. The harmonic mean of the recall and precision, F-measure, was used to measure the performance of each method. Our method achieved the highest F-measure of 0.84 in one sample, compared to 0.56 for GATK, 0.52 for PINDEL and 0.46 for ScanIndel. Similar results were obtained in additional samples, demonstrating that our method was superior to the other methods for detecting intermediate-size indels. We believe that this methodology will contribute to the discovery of intermediate-size indels associated with human disease.


September 22, 2019  |  

Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm.

The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO[Formula: see text]) reduction to N2, whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59.The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO[Formula: see text], nitrite (NO[Formula: see text]) and N2O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures.During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2-3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens. The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO[Formula: see text] under oxic culture conditions, and has a 24-h lag time before growth and NO[Formula: see text] reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO[Formula: see text] as it carries a gene encoding a NirK-type NO[Formula: see text] reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process.These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor.


September 22, 2019  |  

The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides.

Phytophthora cactorum is a homothallic oomycete pathogen, which has a wide host range and high capability to adapt to host defense compounds and fungicides. Here we report the 121.5?Mb genome assembly of the P. cactorum using the third-generation single-molecule real-time (SMRT) sequencing technology. It is the second largest genome sequenced so far in the Phytophthora genera, which contains 27,981 protein-coding genes. Comparison with other Phytophthora genomes showed that P. cactorum had a closer relationship with P. parasitica, P. infestans and P. capsici. P. cactorum has similar gene families in the secondary metabolism and pathogenicity-related effector proteins compared with other oomycete species, but specific gene families associated with detoxification enzymes and carbohydrate-active enzymes (CAZymes) underwent expansion in P. cactorum. P. cactorum had a higher utilization and detoxification ability against ginsenosides-a group of defense compounds from Panax notoginseng-compared with the narrow host pathogen P. sojae. The elevated expression levels of detoxification enzymes and hydrolase activity-associated genes after exposure to ginsenosides further supported that the high detoxification and utilization ability of P. cactorum play a crucial role in the rapid adaptability of the pathogen to host plant defense compounds and fungicides.


September 22, 2019  |  

Whole genome sequence of an edible and potential medicinal fungus, Cordyceps guangdongensis.

Cordyceps guangdongensis is an edible fungus which was approved as a novel food by the Chinese Ministry of Public Health in 2013. It also has a broad prospect of application in pharmaceutical industries, with many medicinal activities. In this study, the whole genome of C. guangdongensis GD15, a single spore isolate from a wild strain, was sequenced and assembled with Illumina and PacBio sequencing technology. The generated genome is 29.05 Mb in size, comprising nine scaffolds with an average GC content of 57.01%. It is predicted to contain a total of 9150 protein-coding genes. Sequence identification and comparative analysis indicated that the assembled scaffolds contained two complete chromosomes and four single-end chromosomes, showing a high level assembly. Gene annotation revealed a diversity of transposons that could contribute to the genome size and evolution. Besides, approximately 15.57% and 12.01% genes involved in metabolic processes were annotated by KEGG and COG respectively. Genes belonging to CAZymes accounted for 3.15% of the total genes. In addition, 435 transcription factors, involved in various biological processes, were identified. Among the identified transcription factors, the fungal transcription regulatory proteins (18.39%) and fungal-specific transcription factors (19.77%) represented the two largest classes of transcription factors. This genomic resource provided a new insight into better understanding the relevance of phenotypic characters and genetic mechanisms in C. guangdongensis. Copyright © 2018 Zhang et al.


September 22, 2019  |  

De novo genome assembly of the red silk cotton tree (Bombax ceiba).

Bombax ceiba L. (the red silk cotton tree) is a large deciduous tree that is distributed in tropical and sub-tropical Asia as well as northern Australia. It has great economic and ecological importance, with several applications in industry and traditional medicine in many Asian countries. To facilitate further utilization of this plant resource, we present here the draft genome sequence for B. ceiba.We assembled a relatively intact genome of B. ceiba by using PacBio single-molecule sequencing and BioNano optical mapping technologies. The final draft genome is approximately 895 Mb long, with contig and scaffold N50 sizes of 1.0 Mb and 2.06 Mb, respectively.The high-quality draft genome assembly of B. ceiba will be a valuable resource enabling further genetic improvement and more effective use of this tree species.


September 22, 2019  |  

Genome-wide analysis of Mycoplasma bovirhinis GS01 reveals potential virulence factors and phylogenetic relationships.

Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis, distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis. Copyright © 2018 Chen et al.


September 22, 2019  |  

Genome sequencing and comparative analysis of Stenotrophomonas acidaminiphila reveal evolutionary insights into sulfamethoxazole resistance.

Stenotrophomonas acidaminiphila is an aerobic, glucose non-fermentative, Gram-negative bacterium that been isolated from various environmental sources, particularly aquatic ecosystems. Although resistance to multiple antimicrobial agents has been reported in S. acidaminiphila, the mechanisms are largely unknown. Here, for the first time, we report the complete genome and antimicrobial resistome analysis of a clinical isolate S. acidaminiphila SUNEO which is resistant to sulfamethoxazole. Comparative analysis among closely related strains identified common and strain-specific genes. In particular, comparison with a sulfamethoxazole-sensitive strain identified a mutation within the sulfonamide-binding site of folP in SUNEO, which may reduce the binding affinity of sulfamethoxazole. Selection pressure analysis indicated folP in SUNEO is under purifying selection, which may be owing to long-term administration of sulfonamide against Stenotrophomonas.


September 22, 2019  |  

Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis).

Bacterial endophytes with the capacity to degrade petroleum hydrocarbons and promote plant growth may facilitate phytoremediation for the removal of petroleum hydrocarbons from contaminated soils. A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium, Pseudomonas aeruginosa L10, was isolated from the roots of a reed, Phragmites australis, in the Yellow River Delta, Shandong, China. P. aeruginosa L10 efficiently degraded C10-C26n-alkanes from diesel oil, as well as common polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, and pyrene. In addition, P. aeruginosa L10 could produce biosurfactant, which was confirmed by the oil spreading method, and surface tension determination of inocula. Moreover, P. aeruginosa L10 had plant growth-stimulating attributes, including siderophore and indole-3-acetic acid (IAA) release, along with 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. To explore the mechanisms underlying the phenotypic traits of endophytic P. aeruginosa L10, we sequenced its complete genome. From the genome, we identified genes related to petroleum hydrocarbon degradation, such as putative genes encoding monooxygenase, dioxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase. Genome annotation revealed that P. aeruginosa L10 contained a gene cluster involved in the biosynthesis of rhamnolipids, rhlABRI, which should be responsible for the observed biosurfactant activity. We also identified two clusters of genes involved in the biosynthesis of siderophore (pvcABCD and pchABCDREFG). The genome also harbored tryptophan biosynthetic genes (trpAB, trpDC, trpE, trpF, and trpG) that are responsible for IAA synthesis. Moreover, the genome contained the ACC deaminase gene essential for ACC deaminase activity. This study will facilitate applications of endophytic P. aeruginosa L10 to phytoremediation by advancing the understanding of hydrocarbon degradation, biosurfactant synthesis, and mutualistic interactions between endophytes and host plants.


September 22, 2019  |  

Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production.

Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes. High-yield lactic acid production can be achieved by the strain EMB156 from renewable biomass substrates under alkaline pretreatments. Single-molecule real-time (SMRT) sequencing technology revealed its 3.01 Mbp whole genome sequence. A total of 2956 protein-coding sequences, 65 tRNA genes, and 6 rRNA operons were predicted in the EMB156 chromosome. Remarkable genomic features responsible for lactic acid fermentation included key enzymes involved in the pentose phosphate (PP)/glycolytic pathway, and an alpha amylase and xylose isomerase were characterized in EMB156. This genomic information coincides with the phenotype of E. mundtii EMB156, reflecting its metabolic flexibility in efficient lactate fermentation, and established a foundation for future biotechnological application. Interestingly, enzyme activities of amylase were quite stable in high-pH broths, indicating a possible mechanism for strong EMB156 growth in an alkaline environment, thereby facilitating lactic acid production. Together, these findings implied that valuable lactic acid-producing bacteria can be discovered efficiently by screening under the extremely alkaline conditions, as exemplified by gut microbial symbionts of Lepidoptera insects.


September 22, 2019  |  

Genomic insights into nematicidal activity of a bacterial endophyte, Raoultella ornithinolytica MG against pine wilt nematode.

Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.


September 22, 2019  |  

Analysis of the complete genome sequence of Bacillus atrophaeus GQJK17 reveals its biocontrol characteristics as a plant growth-promoting rhizobacterium

Bacillus atrophaeus GQJK17 was isolated from the rhizosphere of Lycium barbarum L. in China, which was shown to be a plant growth-promoting rhizobacterium as a new biological agent against pathogenic fungi and gram-positive bacteria. We present its biological characteristics and complete genome sequence, which contains a 4,325,818 bp circular chromosome with 4,181 coding DNA sequences and a G+C content of 43.3%. A genome analysis revealed a total of 8 candidate gene clusters for producing antimicrobial secondary metabolites, including surfactin, bacillaene, fengycin, and bacillibactin. Some other antimicrobial and plant growth-promoting genes were also discovered. Our results provide insights into the genetic and biological basis of B. atrophaeus strains as a biocontrol agent for application in agriculture.


September 22, 2019  |  

Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain.

Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function in defense mechanisms, and lipid transport and metabolism, in comparison with other L. plantarum strains reported. The present study demonstrates the comprehensive analysis of genes related to probiotic functionalities of an EPS-producing L. plantarum strain based on whole genome sequencing.


September 22, 2019  |  

A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits.

Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis ‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512?Mb with N50 of 3.4?Mb and 564 contigs). The length of 512?Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.


September 22, 2019  |  

Genome mining-mediated discovery of a new avermipeptin analogue in Streptomyces actuosus ATCC 25421.

Streptomyces actuosus ATCC 25421 was famous for producing thiopeptide nosiheptide, which has widely been used as a feed additive for the promotion of animal growth. Herein, we report the complete genome sequence of S. actuosus ATCC 25421, which consists of an 8,145,579-bp circular chromosome with a G+C content of 72.53?% containing 7?536 protein-coding genes. The antiSMASH 3.0 program was used to identify 49 biosynthetic gene clusters for putative secondary metabolites, including a putative lantipeptide gene cluster that showed 85?% similarity to the reported informatipeptin biosynthetic gene cluster, indicating that the putative lantipeptide gene cluster has the ability to generate the informatipeptin analogue. Compared with avermipeptin, the lantipeptide precursor peptide (termed avermipeptin B) from S. actuosus ATCC 25421 contains a 14-aa leader peptide and a 24-aa core peptide, in which Ile15 was different from Val15 in avermipeptin. We also deduced the structure and the biosynthetic mechanism of avermipeptin B. Heterologous expression of the avermipeptin B biosynthetic gene cluster in S. lividans TK24 was characterized by high-resolution mass spectrometry (ESI-MS/MS). Finally, we found that avermipeptin B displayed strong activity against Gram-positive strains. The genome sequence reported here can encourage us to mine novel secondary metabolites and investigate their biosynthetic mechanism in the future.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.