Menu
July 7, 2019  |  

Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data.

Over the past 30 years, we have performed many fundamental studies on two Oryza sativa subsp. indica varieties, Zhenshan 97 (ZS97) and Minghui 63 (MH63). To improve the resolution of many of these investigations, we generated two reference-quality reference genome assemblies using the most advanced sequencing technologies. Using PacBio SMRT technology, we produced over 108 (ZS97) and 174 (MH63) Gb of raw sequence data from 166 (ZS97) and 209 (MH63) pools of BAC clones, and generated ~97 (ZS97) and ~74 (MH63) Gb of paired-end whole-genome shotgun (WGS) sequence data with Illumina sequencing technology. With these data, we successfully assembled two platinum standard reference genomes that have been publicly released. Here we provide the full sets of raw data used to generate these two reference genome assemblies. These data sets can be used to test new programs for better genome assembly and annotation, aid in the discovery of new insights into genome structure, function, and evolution, and help to provide essential support to biological research in general.


July 7, 2019  |  

Chloroplast genome sequence of Arabidopsis thaliana accession Landsberg erecta, assembled from single-molecule, real-time sequencing data.

A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. Copyright © 2016 Stadermann et al.


July 7, 2019  |  

Comparative evaluation of the genomes of three common Drosophila-associated bacteria.

Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships. © 2016. Published by The Company of Biologists Ltd.


July 7, 2019  |  

Sequence assembly of Yarrowia lipolytica strain W29/CLIB89 shows transposable element diversity.

Yarrowia lipolytica, an oleaginous yeast, is capable of accumulating significant cellular mass in lipid making it an important source of biosustainable hydrocarbon-based chemicals. In spite of a similar number of protein-coding genes to that in other Hemiascomycetes, the Y. lipolytica genome is almost double that of model yeasts. Despite its economic importance and several distinct strains in common use, an independent genome assembly exists for only one strain. We report here a de novo annotated assembly of the chromosomal genome of an industrially-relevant strain, W29/CLIB89, determined by hybrid next-generation sequencing. For the first time, each Y. lipolytica chromosome is represented by a single contig. The telomeric rDNA repeats were localized by Irys long-range genome mapping and one complete copy of the rDNA sequence is reported. Two large structural variants and retroelement differences with reference strain CLIB122 including a full-length, novel Ty3/Gypsy long terminal repeat (LTR) retrotransposon and multiple LTR-like sequences are described. Strikingly, several of these are adjacent to RNA polymerase III-transcribed genes, which are almost double in number in Y. lipolytica compared to other Hemiascomycetes. In addition to previously-reported dimeric RNA polymerase III-transcribed genes, tRNA pseudogenes were identified. Multiple full-length and truncated LINE elements are also present. Therefore, although identified transposons do not constitute a significant fraction of the Y. lipolytica genome, they could have played an active role in its evolution. Differences between the sequence of this strain and of the existing reference strain underscore the utility of an additional independent genome assembly for this economically important organism.


July 7, 2019  |  

Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites

Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae. We isolated strain P3B5 from the phyllosphere of basil plants (Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis. Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.


July 7, 2019  |  

ChIP-Seq-annotated Heliconius erato genome highlights patterns of cis-regulatory evolution in Lepidoptera.

Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq) annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Genetic basis of priority effects: insights from nectar yeast.

Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.© 2016 The Author(s).


July 7, 2019  |  

Comparative genomics of biotechnologically important yeasts.

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


July 7, 2019  |  

Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria.

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


July 7, 2019  |  

A full-body transcriptome and proteome resource for the European common carp.

The common carp (Cyprinus carpio) is the oldest, most domesticated and one of the most cultured fish species for food consumption. Besides its economic importance, the common carp is also highly suitable for comparative physiological and disease studies in combination with the animal model zebrafish (Danio rerio). They are genetically closely related but offer complementary benefits for fundamental research, with the large body mass of common carp presenting possibilities for obtaining sufficient cell material for advanced transcriptome and proteome studies.Here we have used 19 different tissues from an F1 hybrid strain of the common carp to perform transcriptome analyses using RNA-Seq. For a subset of the tissues we also have performed deep proteomic studies. As a reference, we updated the European common carp genome assembly using low coverage Pacific Biosciences sequencing to permit high-quality gene annotation. These annotated gene lists were linked to zebrafish homologs, enabling direct comparisons with published datasets. Using clustering, we have identified sets of genes that are potential selective markers for various types of tissues. In addition, we provide a script for a schematic anatomical viewer for visualizing organ-specific expression data.The identified transcriptome and proteome data for carp tissues represent a useful resource for further translational studies of tissue-specific markers for this economically important fish species that can lead to new markers for organ development. The similarity to zebrafish expression patterns confirms the value of common carp as a resource for studying tissue-specific expression in cyprinid fish. The availability of the annotated gene set of common carp will enable further research with both applied and fundamental purposes.


July 7, 2019  |  

Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research.

Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group.We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including?>?93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides.This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies.


July 7, 2019  |  

A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem.

Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver.


July 7, 2019  |  

Complete genome sequence of Aggregatibacter actinomycetemcomitans strain IDH781.

We report here the complete genomic sequence and methylome of Aggregatibacter actinomycetemcomitans strain IDH781. This rough strain is used extensively as a model organism to characterize localized aggressive periodontitis pathogenesis, the basic biology and oral cavity colonization of A. actinomycetemcomitans, and its interactions with other members of the oral microbiome. Copyright © 2016 May et al.


July 7, 2019  |  

Genomewide Dam methylation in Escherichia coli during long-term stationary phase.

DNA methylation in prokaryotes is widespread. The most common modification of the genome is the methylation of adenine at the N-6 position. In Escherichia coli K-12 and many gammaproteobacteria, this modification is catalyzed by DNA adenine methyltransferase (Dam) at the GATC consensus sequence and is known to modulate cellular processes including transcriptional regulation of gene expression, initiation of chromosomal replication, and DNA mismatch repair. While studies thus far have focused on the motifs associated with methylated adenine (meA), the frequency of meA across the genome, and temporal dynamics during early periods of incubation, here we conduct the first study on the temporal dynamics of adenine methylation in E. coli by Dam throughout all five phases of the bacterial life cycle in the laboratory. Using single-molecule real-time sequencing, we show that virtually all GATC sites are significantly methylated over time; nearly complete methylation of the chromosome was confirmed by mass spectroscopy analysis. However, we also detect 66 sites whose methylation patterns change significantly over time within a population, including three sites associated with sialic acid transport and catabolism, suggesting a potential role for Dam regulation of these genes; differential expression of this subset of genes was confirmed by quantitative real-time PCR. Further, we show significant growth defects of the dam mutant during long-term stationary phase (LTSP). Together these data suggest that the cell places a high premium on fully methylating the chromosome and that alterations in methylation patterns may have significant impact on patterns of transcription, maintenance of genetic fidelity, and cell survival. IMPORTANCE While it has been shown that methylation remains relatively constant into early stationary phase of E. coli, this study goes further through death phase and long-term stationary phase, a unique time in the bacterial life cycle due to nutrient limitation and strong selection for mutants with increased fitness. The absence of methylation at GATC sites can influence the mutation frequency within a population due to aberrant mismatch repair. Therefore, it is important to investigate the methylation status of GATC sites in an environment where cells may not prioritize methylation of the chromosome. This study demonstrates that chromosome methylation remains a priority even under conditions of nutrient limitation, indicating that continuous methylation at GATC sites could be under positive selection.


July 7, 2019  |  

Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes.

Entomopathogenic fungi such as Beauveria bassiana are promising biological agents for control of malaria mosquitoes. Indeed, infection with B. bassiana reduces the lifespan of mosquitoes in the laboratory and in the field. Natural isolates of B. bassiana show up to 10-fold differences in virulence between the most and the least virulent isolate. In this study, we sequenced the genomes of five isolates representing the extremes of low/high virulence and three RNA libraries, and applied a genome comparison approach to uncover genetic mechanisms underpinning virulence.A high-quality, near-complete genome assembly was achieved for the highly virulent isolate Bb8028, which was compared to the assemblies of the four other isolates. Whole genome analysis showed a high level of genetic diversity between the five isolates (2.85-16.8 SNPs/kb), which grouped into two distinct phylogenetic clusters. Mating type gene analysis revealed the presence of either the MAT1-1-1 or the MAT1-2-1 gene. Moreover, a putative new MAT gene (MAT1-2-8) was detected in the MAT1-2 locus. Comparative genome analysis revealed that Bb8028 contains 163 genes exclusive for this isolate. These unique genes have a tendency to cluster in the genome and to be often located near the telomeres. Among the genes unique to Bb8028 are a Non-Ribosomal Peptide Synthetase (NRPS) secondary metabolite gene cluster, a polyketide synthase (PKS) gene, and five genes with homology to bacterial toxins. A survey of candidate virulence genes for B. bassiana is presented.Our results indicate several genes and molecular processes that may underpin virulence towards mosquitoes. Thus, the genome sequences of five isolates of B. bassiana provide a better understanding of the natural variation in virulence and will offer a major resource for future research on this important biological control agent.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.