Menu
April 21, 2020  |  

Complete mitochondrial genome of a Chinese oil tree yellowhorn, Xanthoceras sorbifolium (Sapindales, Sapindaceae)

Xanthoceras sorbifolium is an important woody oil seed tree in North China. In this study, the complete mitochondrial genome of X. sorbifolium was sequenced using Illumina Hiseq and PacBio sequencing technique. The mitogenome is 575,633bp in length and the GC content is 45.71%. The genome con- sists of 42 protein-coding genes, 4 ribosomal-RNA genes, and 24 transfer-RNA genes. Phylogenetic ana- lysis based on protein-coding genes showed that X. sorbifolium was close with the species in Bombacaceae and Malvaceae family.


April 21, 2020  |  

Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi.

Entomophthoroid fungi represent an ecologically important group of fungal pathogens on insects. Here, the whole mitogenome of Conidiobolus heterosporus, one of the entomophthoroid fungi, was described and compared to those early branching fungi with available mitogenomes. The 53,364-bp circular mitogenome of C. heterosporus contained two rRNA genes, 14 standard protein-coding genes, 26 tRNA genes, and three free-standing ORFs. Thirty introns interrupted nine mitochondrial genes. Phylogenetic analysis based on mitochondrion-encoded proteins revealed that C. heterosporus was most close to Zancudomyces culisetae in the Zoopagomycota of basal fungi. Comparison on mitogenomes of 23 basal fungi revealed great variabilities in terms of mitogenome conformation (circular or linear), genetic code (codes 1, 4, or 16), AT contents (53.3-85.5%), etc. These mitogenomes varied from 12.0 to 97.3 kb in sizes, mainly due to different numbers of genes and introns. They showed frequent DNA rearrangement events and a high variability of gene order, although high synteny and conserved gene order were also present between closely related species. By reporting the first mitogenome in Entomophthoromycotina and the second in Zoopagomycota, this study greatly enhanced our understanding on evolution of basal fungi.


April 21, 2020  |  

Genetic basis for the establishment of endosymbiosis in Paramecium.

The single-celled ciliate Paramecium bursaria is an indispensable model for investigating endosymbiosis between protists and green-algal symbionts. To elucidate the mechanism of this type of endosymbiosis, we combined PacBio and Illumina sequencing to assemble a high-quality and near-complete macronuclear genome of P. bursaria. The genomic characteristics and phylogenetic analyses indicate that P. bursaria is the basal clade of the Paramecium genus. Through comparative genomic analyses with its close relatives, we found that P. bursaria encodes more genes related to nitrogen metabolism and mineral absorption, but encodes fewer genes involved in oxygen binding and N-glycan biosynthesis. A comparison of the transcriptomic profiles between P. bursaria with and without endosymbiotic Chlorella showed differential expression of a wide range of metabolic genes. We selected 32 most differentially expressed genes to perform RNA interference experiment in P. bursaria, and found that P. bursaria can regulate the abundance of their symbionts through glutamine supply. This study provides novel insights into Paramecium evolution and will extend our knowledge of the molecular mechanism for the induction of endosymbiosis between P. bursaria and green algae.


April 21, 2020  |  

The complete mitochondrial genome sequences of Senna tora (Fabales: Fabaceae)

Cassia tora (Senna tora), known as an economically important plant, is medicinal in nature and belongs to the Fabaceae family. The complete mitochondrial genome sequences of S. tora were 566,589bp in length with a 45.23% GC content. A total of 63 genes were annotated including 36 protein-coding genes, 22 tRNA genes, and 5 rRNA genes. Phylogenetic tree based on the mitochondrial genome dem- onstrated that S. tora was most closely related to the Senna occidentalis and Caesalpinioideae subfamily and is definitely separated from the Faboideae subfamily.


April 21, 2020  |  

The mitochondrial genome analysis of Isaria tenuipes (Hypocreales: Cordycipitaceae)

The mitochondrial genome of Isaria tenuipes, strain TTZ2017-3, was sequenced on the Illumina Hiseq 4000 and the PacBio Sequel Sequencer and annotated. The genome is 66703bp in length, encoding 15 conserved protein-coding genes (PCGs) including ribosomal protein S3, two rRNA genes and 26 tRNA genes. The nucleotide composition of I. tenuipes mitochondrial genome was 39.1% of A, 35.6% of T, 11.2% of C, 14.2% of G, 74.7% of AþT content. Phylogenetic analysis with other Hypocreales species revealed that I. tenuipes was more closely related to Cordyceps militaris, separated from Lecanicillium muscarium, Paecilomyces hepialid, and Beauveria species with Cordyceps teleomorph. This study provided valuable information on the gene contents of the mitochondrial genome and would facilitate the study of function and evolution of Isaria.


April 21, 2020  |  

Insights into the evolution and drug susceptibility of Babesia duncani from the sequence of its mitochondrial and apicoplast genomes.

Babesia microti and Babesia duncani are the main causative agents of human babesiosis in the United States. While significant knowledge about B. microti has been gained over the past few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. Here we report the first known completed sequence and annotation of the apicoplast and mitochondrial genomes of B. duncani. We found that the apicoplast genome of this parasite consists of a 34?kb monocistronic circular molecule encoding functions that are important for apicoplast gene transcription as well as translation and maturation of the organelle’s proteins. The mitochondrial genome of B. duncani consists of a 5.9?kb monocistronic linear molecule with two inverted repeats of 48?bp at both ends. Using the conserved cytochrome b (Cytb) and cytochrome c oxidase subunit I (coxI) proteins encoded by the mitochondrial genome, phylogenetic analysis revealed that B. duncani defines a new lineage among apicomplexan parasites distinct from B. microti, Babesia bovis, Theileria spp. and Plasmodium spp. Annotation of the apicoplast and mitochondrial genomes of B. duncani identified targets for development of effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or in combination against B. duncani in culture as well as in animal models.Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau.

Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high-altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi-C technique to assemble the T. tibetana genome. A 652-Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein-coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau. © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

Genome analysis and genetic transformation of a water surface-floating microalga Chlorococcum sp. FFG039.

Microalgal harvesting and dewatering are the main bottlenecks that need to be overcome to tap the potential of microalgae for production of valuable compounds. Water surface-floating microalgae form robust biofilms, float on the water surface along with gas bubbles entrapped under the biofilms, and have great potential to overcome these bottlenecks. However, little is known about the molecular mechanisms involved in the water surface-floating phenotype. In the present study, we analysed the genome sequence of a water surface-floating microalga Chlorococcum sp. FFG039, with a next generation sequencing technique to elucidate the underlying mechanisms. Comparative genomics study with Chlorococcum sp. FFG039 and other non-floating green microalgae revealed some of the unique gene families belonging to this floating microalga, which may be involved in biofilm formation. Furthermore, genetic transformation of this microalga was achieved with an electroporation method. The genome information and transformation techniques presented in this study will be useful to obtain molecular insights into the water surface-floating phenotype of Chlorococcum sp. FFG039.


April 21, 2020  |  

Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis).

Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n?=?58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and information on its genomic architecture is scanty so far. We trust that availability of its whole genome sequence data and assembly will greatly solve this problem and help to generate many information including phylogenetic status of mithun. Recently, the first genome assembly of gayal, mithun of Chinese origin, was published. However, an improved reference genome assembly would still benefit in understanding genetic variation in mithun populations reared under diverse geographical locations and for building a superior consensus assembly. We, therefore, performed deep sequencing of the genome of an adult female mithun from India, assembled and annotated its genome and performed extensive bioinformatic analyses to produce a superior de novo genome assembly of mithun.We generated ˜300 Gigabyte (Gb) raw reads from whole-genome deep sequencing platforms and assembled the sequence data using a hybrid assembly strategy to create a high quality de novo assembly of mithun with 96% recovered as per BUSCO analysis. The final genome assembly has a total length of 3.0 Gb, contains 5,015 scaffolds with an N50 value of 1?Mb. Repeat sequences constitute around 43.66% of the assembly. The genomic alignments between mithun to cattle showed that their genomes, as expected, are highly conserved. Gene annotation identified 28,044 protein-coding genes presented in mithun genome. The gene orthologous groups of mithun showed a high degree of similarity in comparison with other species, while fewer mithun specific coding sequences were found compared to those in cattle.Here we presented the first de novo draft genome assembly of Indian mithun having better coverage, less fragmented, better annotated, and constitutes a reasonably complete assembly compared to the previously published gayal genome. This comprehensive assembly unravelled the genomic architecture of mithun to a great extent and will provide a reference genome assembly to research community to elucidate the evolutionary history of mithun across its distinct geographical locations.


April 21, 2020  |  

Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites.

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities. © The Author(s) 2019.


April 21, 2020  |  

Mitochondrial genome and transcriptome analysis of five alloplasmic male-sterile lines in Brassica juncea.

Alloplasmic lines, in which the nuclear genome is combined with wild cytoplasm, are often characterized by cytoplasmic male sterility (CMS), regardless of whether it was derived from sexual or somatic hybridization with wild relatives. In this study, we sequenced and analyzed the mitochondrial genomes of five such alloplasmic lines in Brassica juncea.The assembled and annotated mitochondrial genomes of the five alloplasmic lines were found to have virtually identical gene contents. They preserved most of the ancestral mitochondrial segments, and the same candidate male sterility gene (orf108) was found harbored in mitotype-specific sequences. We also detected promiscuous sequences of chloroplast origin that were conserved among plants of the Brassicaceae, and found the RNA editing profiles to vary across the five mitochondrial genomes.On the basis of our characterization of the genetic nature of five alloplasmic mitochondrial genomes, we speculated that the putative candidate male sterility gene orf108 may not be responsible for the CMS observed in Brassica oxyrrhina and Diplotaxis catholica. Furthermore, we propose the potential coincidence of CMS in alloplasmic lines. Our findings lay the foundation for further elucidation of male sterility gene.


April 21, 2020  |  

A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds.

The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor >?98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features.The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.


April 21, 2020  |  

Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects.

Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup.We generated a highly-contiguous ~?129?Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764?bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes.We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions’ recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.


April 21, 2020  |  

Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.).

Quinoa has recently gained international attention because of its nutritious seeds, prompting the expansion of its cultivation into new areas in which it was not originally selected as a crop. Improving quinoa production in these areas will benefit from the introduction of advantageous traits from free-living relatives that are native to these, or similar, environments. As part of an ongoing effort to characterize the primary and secondary germplasm pools for quinoa, we report the complete mitochondrial and chloroplast genome sequences of quinoa accession PI 614886 and the identification of sequence variants in additional accessions from quinoa and related species. This is the first reported mitochondrial genome assembly in the genus Chenopodium. Inference of phylogenetic relationships among Chenopodium species based on mitochondrial and chloroplast variants supports the hypotheses that 1) the A-genome ancestor was the cytoplasmic donor in the original tetraploidization event, and 2) highland and coastal quinoas were independently domesticated.


April 21, 2020  |  

A high-quality de novo genome assembly from a single mosquito using PacBio sequencing

A high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (~5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons. Here we present a high-quality de novo genome assembly from a single Anopheles coluzzii mosquito. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 100 ng of starting genomic DNA. The sample was run on the Sequel System with chemistry 3.0 and software v6.0, generating, on average, 25 Gb of sequence per SMRT Cell with 20 h movies, followed by diploid de novo genome assembly with FALCON-Unzip. The resulting curated assembly had high contiguity (contig N50 3.5 Mb) and completeness (more than 98% of conserved genes were present and full-length). In addition, this single-insect assembly now places 667 (>90%) of formerly unplaced genes into their appropriate chromosomal contexts in the AgamP4 PEST reference. We were also able to resolve maternal and paternal haplotypes for over 1/3 of the genome. By sequencing and assembling material from a single diploid individual, only two haplotypes were present, simplifying the assembly process compared to samples from multiple pooled individuals. The method presented here can be applied to samples with starting DNA amounts as low as 100 ng per 1 Gb genome size. This new low-input approach puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.