Menu
April 21, 2020  |  

Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems.

A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction-modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction-modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum-type strain and acts as a blueprint for transformation of other non-model microorganisms.


April 21, 2020  |  

Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids.

In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7a-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCEC. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils.

The severity of environmental conditions at Earth’s frigid zones present attractive opportunities for microbial biomining due to their heightened potential as reservoirs for novel secondary metabolites. Arid soil microbiomes within the Antarctic and Arctic circles are remarkably rich in Actinobacteria and Proteobacteria, bacterial phyla known to be prolific producers of natural products. Yet the diversity of secondary metabolite genes within these cold, extreme environments remain largely unknown. Here, we employed amplicon sequencing using PacBio RS II, a third generation long-read platform, to survey over 200 soils spanning twelve east Antarctic and high Arctic sites for natural product-encoding genes, specifically targeting non-ribosomal peptides (NRPS) and Type I polyketides (PKS). NRPS-encoding genes were more widespread across the Antarctic, whereas PKS genes were only recoverable from a handful of sites. Many recovered sequences were deemed novel due to their low amino acid sequence similarity to known protein sequences, particularly throughout the east Antarctic sites. Phylogenetic analysis revealed that a high proportion were most similar to antifungal and biosurfactant-type clusters. Multivariate analysis showed that soil fertility factors of carbon, nitrogen and moisture displayed significant negative relationships with natural product gene richness. Our combined results suggest that secondary metabolite production is likely to play an important physiological component of survival for microorganisms inhabiting arid, nutrient-starved soils. © FEMS 2019.


April 21, 2020  |  

FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1.

Fidaxomicin, an 18-membered macrolide antibiotic, is highly active against Clostridium difficile, the most common cause of diarrhea in hospitalized patients. Though the biosynthetic mechanism of fidaxomicin has been well studied, little is known about its regulatory mechanism. Here, we reported that FadR1, a LAL family transcriptional regulator in the fidaxomicin cluster of Actinoplanes deccanensis Yp-1, acts as an activator for fidaxomicin biosynthesis. The disruption of fadR1 abolished the ability to synthesize fidaxomicin, and production could be restored by reintegrating a single copy of fadR1. Overexpression of fadR1 resulted in an approximately 400 % improvement in fidaxomicin production. Electrophoretic mobility shift assays indicated that fidaxomicin biosynthesis is under the control of FadR1 through its binding to the promoter regions of fadM, fadA1-fadP2, fadS2-fadC, and fadE-fadF, respectively. And the conserved binding sites of FadR1 within the four promoter regions were determined by footprinting experiment. All results indicated that fadR1 encodes a pathway-specific positive regulator of fidaxomicin biosynthesis and upregulates the transcription levels of most of genes by binding to the four above intergenic regions. In summary, we not only clearly elucidate the regulatory mechanism of FadR1 but also provide strategies for the construction of industrial high-yield strain of fidaxomicin.


April 21, 2020  |  

Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli.

CRISPR utilizing Cas9 from Streptococcus pyogenes (SpCas9) and CRISPR interference (CRISPRi) employing catalytically inactive SpCas9 (SpdCas9) have gained popularity for Escherichia coli engineering. To integrate the SpdCas9-based CRISPRi module using CRISPR while avoiding mutual interference between SpCas9/SpdCas9 and their cognate single-guide RNA (sgRNA), this study aimed at exploring an alternative Cas nuclease orthogonal to SpCas9. We compared several Cas9 variants from different microorganisms such as Staphylococcus aureus (SaCas9) and Streptococcus thermophilius CRISPR1 (St1Cas9) as well as Cas12a derived from Francisella novicida (FnCas12a). At the commonly used E. coli model genes  LacZ, we found that SaCas9 and St1Cas9 induced DNA cleavage more effectively than FnCas12a. Both St1Cas9 and SaCas9 were orthogonal to SpCas9 and the induced DNA cleavage promoted the integration of heterologous DNA of up to 10?kb, at which size St1Cas9 was superior to SaCas9 in recombination frequency/accuracy. We harnessed the St1Cas9 system to integrate SpdCas9 and sgRNA arrays for constitutive knockdown of three genes, knock-in pyc and knockout adhE, without compromising the CRISPRi knockdown efficiency. The combination of orthogonal CRISPR/CRISPRi for metabolic engineering enhanced succinate production while inhibiting byproduct formation and may pave a new avenue to E. coli engineering. © 2019 Wiley Periodicals, Inc.


April 21, 2020  |  

Genome analysis and genetic transformation of a water surface-floating microalga Chlorococcum sp. FFG039.

Microalgal harvesting and dewatering are the main bottlenecks that need to be overcome to tap the potential of microalgae for production of valuable compounds. Water surface-floating microalgae form robust biofilms, float on the water surface along with gas bubbles entrapped under the biofilms, and have great potential to overcome these bottlenecks. However, little is known about the molecular mechanisms involved in the water surface-floating phenotype. In the present study, we analysed the genome sequence of a water surface-floating microalga Chlorococcum sp. FFG039, with a next generation sequencing technique to elucidate the underlying mechanisms. Comparative genomics study with Chlorococcum sp. FFG039 and other non-floating green microalgae revealed some of the unique gene families belonging to this floating microalga, which may be involved in biofilm formation. Furthermore, genetic transformation of this microalga was achieved with an electroporation method. The genome information and transformation techniques presented in this study will be useful to obtain molecular insights into the water surface-floating phenotype of Chlorococcum sp. FFG039.


April 21, 2020  |  

Programmable mutually exclusive alternative splicing for generating RNA and protein diversity.

Alternative splicing performs a central role in expanding genomic coding capacity and proteomic diversity. However, programming of splicing patterns in engineered biological systems remains underused. Synthetic approaches thus far have predominantly focused on controlling expression of a single protein through alternative splicing. Here, we describe a modular and extensible platform for regulating four programmable exons that undergo a mutually exclusive alternative splicing event to generate multiple functionally-distinct proteins. We present an intron framework that enforces the mutual exclusivity of two internal exons and demonstrate a graded series of consensus sequence elements of varying strengths that set the ratio of two mutually exclusive isoforms. We apply this framework to program the DNA-binding domains of modular transcription factors to differentially control downstream gene activation. This splicing platform advances an approach for generating diverse isoforms and can ultimately be applied to program modular proteins and increase coding capacity of synthetic biological systems.


April 21, 2020  |  

Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives.

The candidate genus “Methylacidiphilum” comprises thermoacidophilic aerobic methane oxidizers belonging to the Verrucomicrobia phylum. These are the first described non-proteobacterial aerobic methane oxidizers. The genes pmoCAB, encoding the particulate methane monooxygenase do not originate from horizontal gene transfer from proteobacteria. Instead, the “Ca. Methylacidiphilum” and the sister genus “Ca. Methylacidimicrobium” represent a novel and hitherto understudied evolutionary lineage of aerobic methane oxidizers. Obtaining and comparing the full genome sequences is an important step towards understanding the evolution and physiology of this novel group of organisms.Here we present the closed genome of “Ca. Methylacidiphilum kamchatkense” strain Kam1 and a comparison with the genomes of its two closest relatives “Ca. Methylacidiphilum fumariolicum” strain SolV and “Ca. Methylacidiphilum infernorum” strain V4. The genome consists of a single 2,2 Mbp chromosome with 2119 predicted protein coding sequences. Genome analysis showed that the majority of the genes connected with metabolic traits described for one member of “Ca. Methylacidiphilum” is conserved between all three genomes. All three strains encode class I CRISPR-cas systems. The average nucleotide identity between “Ca. M. kamchatkense” strain Kam1 and strains SolV and V4 is =95% showing that they should be regarded as separate species. Whole genome comparison revealed a high degree of synteny between the genomes of strains Kam1 and SolV. In contrast, comparison of the genomes of strains Kam1 and V4 revealed a number of rearrangements. There are large differences in the numbers of transposable elements found in the genomes of the three strains with 12, 37 and 80 transposable elements in the genomes of strains Kam1, V4 and SolV respectively. Genomic rearrangements and the activity of transposable elements explain much of the genomic differences between strains. For example, a type 1h uptake hydrogenase is conserved between strains Kam1 and SolV but seems to have been lost from strain V4 due to genomic rearrangements.Comparing three closed genomes of “Ca. Methylacidiphilum” spp. has given new insights into the evolution of these organisms and revealed large differences in numbers of transposable elements between strains, the activity of these explains much of the genomic differences between strains.


April 21, 2020  |  

Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii.

Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream substrates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efficiency of gene transfer and genomic integration of entire biosynthetic pathways.We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cassettes (>?5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efficient generation of transconjugants using the Gram-positive origins of replication repL and repH. We also investigated the impact of DNA methylation on conjugation efficiency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfite conversion and PacBio sequencing to determine the DNA methylation profile of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confirmed by detecting enzyme proteotypic peptides and the formation of acetone and isopropanol by C. ljungdahlii cultures utilizing syngas as a carbon and energy source.The developed multi-gene delivery system offers a versatile tool to integrate and stably express large biosynthetic pathways in the industrial promising syngas-fermenting microorganism C. ljungdahlii. The simple transfer and stable integration of large gene clusters (like entire biosynthetic pathways) is expanding the range of possible fermentation products of heterologously expressing recombinant strains. We also believe that the developed gene delivery system can be adapted to other clostridial strains as well.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.