June 1, 2021  |  

Metagenomes of native and electrode-enriched microbial communities from the Soudan Iron Mine.

Despite apparent carbon limitation, anoxic deep subsurface brines at the Soudan Underground Iron Mine harbor active microbial communities. To characterize these assemblages, we performed shotgun metagenomics of native and enriched samples. Following enrichment on poised electrodes and long read sequencing, we recovered from the metagenome the closed, circular genome of a novel Desulfuromonas sp. with remarkable genomic features that were not fully resolved by short read assembly alone. This organism was essentially absent in unenriched Soudan communities, indicating that electrodes are highly selective for putative metal reducers. Native community metagenomes suggest that carbon cycling is driven by methyl-C1 metabolism, in particular methylotrophic methanogenesis. Our results highlight the promising potential for long reads in metagenomic surveys of low-diversity environments.


June 1, 2021  |  

SMRT Sequencing of full-length androgen receptor isoforms in prostate cancer reveals previously hidden drug resistant variants

Prostate cancer is the most frequently diagnosed male cancer. For prostate cancer that has progressed to an advanced or metastatic stage, androgen deprivation therapy (ADT) is the standard of care. ADT inhibits activity of the androgen receptor (AR), a master regulator transcription factor in normal and cancerous prostate cells. The major limitation of ADT is the development of castration-resistant prostate cancer (CRPC), which is almost invariably due to transcriptional re-activation of the AR. One mechanism of AR transcriptional re-activation is expression of AR-V7, a truncated, constitutively active AR variant (AR-V) arising from alternative AR pre-mRNA splicing. Noteworthy, AR-V7 is being developed as a predictive biomarker of primary resistance to androgen receptor (AR)-targeted therapies in CRPC. Multiple additional AR-V species are expressed in clinical CRPC, but the extent to which these may be co-expressed with AR-V7 or predict resistance is not known.


April 21, 2020  |  

Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy.

Amplification of a CAG trinucleotide motif (CTG18.1) within the TCF4 gene has been strongly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Nevertheless, a small minority of clinically unaffected elderly patients who have expanded CTG18.1 sequences have been identified. To test the hypothesis that the CAG expansions in these patients are protected from FECD because they have interruptions within the CAG repeats, we utilized a combination of an amplification-free, long-read sequencing method and a new target-enrichment sequence analysis tool developed by Pacific Biosciences to interrogate the sequence structure of expanded repeats. The sequencing was successful in identifying a previously described interruption within an unexpanded allele and provided sequence data on expanded alleles greater than 2000 bases in length. The data revealed considerable heterogeneity in the size distribution of expanded repeats within each patient. Detailed analysis of the long sequence reads did not reveal any instances of interruptions to the expanded CAG repeats, but did reveal novel variants within the AGG repeats that flank the CAG repeats in two of the five samples from clinically unaffected patients with expansions. This first examination of the sequence structure of CAG repeats in CTG18.1 suggests that factors other than interruptions to the repeat structure account for the absence of disease in some elderly patients with repeat expansions in the TCF4 gene.


April 21, 2020  |  

Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight.

The human genome contains “dark” gene regions that cannot be adequately assembled or aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations within these gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read or linked-read technologies resolve these regions.Based on standard whole-genome Illumina sequencing data, we identify 36,794 dark regions in 6054 gene bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are completely dark and 35.2% are =?5% dark. We identify dark regions that are present in protein-coding exons across 748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present an algorithm to resolve most camouflaged regions and apply it to the Alzheimer’s Disease Sequencing Project. We rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer’s disease gene, found in disease cases but not in controls.While we could not formally assess the association of the CR1 frameshift mutation with Alzheimer’s disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-read technologies.


September 22, 2019  |  

Androgen receptor variant AR-V9 is co-expressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance.

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies.  Accordingly, efforts are underway to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC).  The purpose of this study was to understand whether other AR variants may be co-expressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design:  We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models.  Co-expression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively.  Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera.  Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently co-expressed with AR-V7.  Both AR variant species were found to share a common 3′ terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously-thought to target AR-V7 uniquely.  AR-V9 promoted ligand-independent growth of prostate cancer cells.  High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0, 95% CI = 1.31-12.2, P = 0.02).   Conclusions:  AR-V9 may be an important component of therapeutic resistance in CRPC. Copyright ©2017, American Association for Cancer Research.


September 22, 2019  |  

Proteomic detection of immunoglobulin light chain variable region peptides from amyloidosis patient biopsies.

Immunoglobulin light chain (LC) amyloidosis (AL) is caused by deposition of clonal LCs produced by an underlying plasma cell neoplasm. The clonotypic LC sequences are unique to each patient, and they cannot be reliably detected by either immunoassays or standard proteomic workflows that target the constant regions of LCs. We addressed this issue by developing a novel sequence template-based workflow to detect LC variable (LCV) region peptides directly from AL amyloid deposits. The workflow was implemented in a CAP/CLIA compliant clinical laboratory dedicated to proteomic subtyping of amyloid deposits extracted from either formalin-fixed paraffin-embedded tissues or subcutaneous fat aspirates. We evaluated the performance of the workflow on a validation cohort of 30 AL patients, whose amyloidogenic clone was identified using a novel proteogenomics method, and 30 controls. The recall and negative predictive values of the workflow, when identifying the gene family of the AL clone, were 93 and 98%, respectively. Application of the workflow on a clinical cohort of 500 AL amyloidosis samples highlighted a bias in the LCV gene families used by the AL clones. We also detected similarity between AL clones deposited in multiple organs of systemic AL patients. In summary, AL proteomic data sets are rich in LCV region peptides of potential clinical significance that are recoverable with advanced bioinformatics.


September 22, 2019  |  

Interaction between the microbiome and TP53 in human lung cancer.

Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort.Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas.The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection.


September 22, 2019  |  

Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat.

Parastagonospora nodorum, the causal agent of Septoria nodorum blotch in wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification was greatly aided by the development of a draft genome of Australian isolate SN15 via Sanger sequencing, yet it remained largely fragmented. This research presents the development of nearly finished genomes of P. nodorum isolates Sn4, Sn2000, and Sn79-1087 using long-read sequencing technology. RNAseq analysis of isolate Sn4, consisting of eight time points covering various developmental and infection stages, mediated the annotation of 13,379 genes. Analysis of these genomes revealed large-scale polymorphism between the three isolates, including the complete absence of contig 23 from isolate Sn79-1087, and a region of genome expansion on contig 10 in isolates Sn4 and Sn2000. Additionally, these genomes exhibit the hallmark characteristics of a “two-speed” genome, being partitioned into two distinct GC-equilibrated and AT-rich compartments. Interestingly, isolate Sn79-1087 contains a lower proportion of AT-rich segments, indicating a potential lack of evolutionary hotspots. These newly sequenced genomes, consisting of telomere-to-telomere assemblies of nearly all 23 P. nodorum chromosomes, provide a robust foundation for the further examination of effector biology and genome evolution. Copyright © 2018 Richards et al.


September 22, 2019  |  

The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements.

Ensifer meliloti (formerly Rhizobium meliloti and Sinorhizobium meliloti) is a model bacterium for understanding legume-rhizobial symbioses. The tripartite genome of E. meliloti consists of a chromosome, pSymA and pSymB, and in some instances strain-specific accessory plasmids. The majority of previous sequencing studies have relied on the use of assemblies generated from short read sequencing, which leads to gaps and assembly errors. Here we used PacBio-based, long-read assemblies and were able to assemble, de novo, complete circular replicons. In this study, we sequenced, de novo-assembled and analysed 10 E. meliloti strains. Sequence comparisons were also done with data from six previously published genomes. We identified genome differences between the replicons, including mol% G+C and gene content, nucleotide repeats, and transposon-associated loci. Additionally, genomic rearrangements both within and between replicons were identified, providing insight into evolutionary processes at the structural level. There were few cases of inter-replicon gene transfer of core genes between the main replicons. Accessory plasmids were more similar to pSymA than to either pSymB or the chromosome, with respect to gene content, transposon content and G+C content. In our population, the accessory plasmids appeared to share an open genome with pSymA, which contains many nodulation- and nitrogen fixation-related genes. This may explain previous observations that horizontal gene transfer has a greater effect on the content of pSymA than pSymB, or the chromosome, and why some rhizobia show unstable nodulation phenotypes on legume hosts.


September 22, 2019  |  

Biparental Inheritance of Mitochondrial DNA in Humans.

Although there has been considerable debate about whether paternal mitochondrial DNA (mtDNA) transmission may coexist with maternal transmission of mtDNA, it is generally believed that mitochondria and mtDNA are exclusively maternally inherited in humans. Here, we identified three unrelated multigeneration families with a high level of mtDNA heteroplasmy (ranging from 24 to 76%) in a total of 17 individuals. Heteroplasmy of mtDNA was independently examined by high-depth whole mtDNA sequencing analysis in our research laboratory and in two Clinical Laboratory Improvement Amendments and College of American Pathologists-accredited laboratories using multiple approaches. A comprehensive exploration of mtDNA segregation in these families shows biparental mtDNA transmission with an autosomal dominantlike inheritance mode. Our results suggest that, although the central dogma of maternal inheritance of mtDNA remains valid, there are some exceptional cases where paternal mtDNA could be passed to the offspring. Elucidating the molecular mechanism for this unusual mode of inheritance will provide new insights into how mtDNA is passed on from parent to offspring and may even lead to the development of new avenues for the therapeutic treatment for pathogenic mtDNA transmission.


September 22, 2019  |  

Detection and visualization of complex structural variants from long reads.

With applications in cancer, drug metabolism, and disease etiology, understanding structural variation in the human genome is critical in advancing the thrusts of individualized medicine. However, structural variants (SVs) remain challenging to detect with high sensitivity using short read sequencing technologies. This problem is exacerbated when considering complex SVs comprised of multiple overlapping or nested rearrangements. Longer reads, such as those from Pacific Biosciences platforms, often span multiple breakpoints of such events, and thus provide a way to unravel small-scale complexities in SVs with higher confidence.We present CORGi (COmplex Rearrangement detection with Graph-search), a method for the detection and visualization of complex local genomic rearrangements. This method leverages the ability of long reads to span multiple breakpoints to untangle SVs that appear very complicated with respect to a reference genome. We validated our approach against both simulated long reads, and real data from two long read sequencing technologies. We demonstrate the ability of our method to identify breakpoints inserted in synthetic data with high accuracy, and the ability to detect and plot SVs from NA12878 germline, achieving 88.4% concordance between the two sets of sequence data. The patterns of complexity we find in many NA12878 SVs match known mechanisms associated with DNA replication and structural variant formation, and highlight the ability of our method to automatically label complex SVs with an intuitive combination of adjacent or overlapping reference transformations.CORGi is a method for interrogating genomic regions suspected to contain local rearrangements using long reads. Using pairwise alignments and graph search CORGi produces labels and visualizations for local SVs of arbitrary complexity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.