Menu
April 21, 2020  |  

A First Study of the Virulence Potential of a Bacillus subtilis Isolate From Deep-Sea Hydrothermal Vent.

Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.


April 21, 2020  |  

Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa.

Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.


April 21, 2020  |  

Genome sequence and transcriptomic profiles of a marine bacterium, Pseudoalteromonas agarivorans Hao 2018.

Members of the marine genus Pseudoalteromonas have attracted great interest because of their ability to produce a large number of biologically active substances. Here, we report the complete genome sequence of Pseudoalteromonas agarivorans Hao 2018, a strain isolated from an abalone breeding environment, using second-generation Illumina and third-generation PacBio sequencing technologies. Illumina sequencing offers high quality and short reads, while PacBio technology generates long reads. The scaffolds of the two platforms were assembled to yield a complete genome sequence that included two circular chromosomes and one circular plasmid. Transcriptomic data for Pseudoalteromonas were not available. We therefore collected comprehensive RNA-seq data using Illumina sequencing technology from a fermentation culture of P. agarivorans Hao 2018. Researchers studying the evolution, environmental adaptations and biotechnological applications of Pseudoalteromonas may benefit from our genomic and transcriptomic data to analyze the function and expression of genes of interest.


September 22, 2019  |  

Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing.

A simultaneous nitrification, denitrification and organic matter removal (SNDOR) process in sequencing batch biofilm reactor (SBBR) was established to treat saline mustard tuber wastewater (MTWW) in this study. An average COD removal efficiency of 86.48% and total nitrogen removal efficiency of 86.48% were achieved at 30gNaClL(-1) during 100days’ operation. The underlying mechanisms were investigated by PacBio SMRT DNA sequencing (V1-V9) to analyze the microbial community structures and its variation from low salinity at 10gNaClL(-1) to high salinity at 30gNaClL(-1). Results showed elevated salinity did not affect biological performance but reduced microbial diversity in SBBR, and halophilic bacteria gradually predominated by succession. Despite of high C/N, autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas and ammonia-oxidizing archaea (AOA) Candidatus Nitrososphaera both contributed to ammonium oxidation. As salinity increasing, nitrite-oxidizing bacteria (NOB) were significantly inhibited, partial nitrification and denitrification (PND) process gradually contributed to nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits.

Diversity of microbial organisms is linked to global climatic gradients. The genus Phytophthora includes both aquatic and terrestrial plant pathogenic species that display a large variation of functional traits. The extent to which the physical environment (water or soil) modulates the interaction of microorganisms with climate is unknown. Here, we explored the main environmental drivers of diversity and functional trait composition of Phytophthora communities. Communities were obtained by a novel metabarcoding setup based on PacBio sequencing of river filtrates in 96 river sites along a geographical gradient. Species were classified as terrestrial or aquatic based on their phylogenetic clade. Overall, terrestrial and aquatic species showed contrasting patterns of diversity. For terrestrial species, precipitation was a stronger driver than temperature, and diversity and functional diversity decreased with decreasing temperature and precipitation. In cold and dry areas, the dominant species formed resistant structures and had a low optimum temperature. By contrast, for aquatic species, temperature and water chemistry were the strongest drivers, and diversity increased with decreasing temperature and precipitation. Within the same area, environmental filtering affected terrestrial species more strongly than aquatic species (20% versus 3% of the studied communities, respectively). Our results highlight the importance of functional traits and the physical environment in which microorganisms develop their life cycle when predicting their distribution under changing climatic conditions. Temperature and rainfall may be buffered differently by water and soil, and thus pose contrasting constrains to microbial assemblies.


September 22, 2019  |  

Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres.

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.


September 22, 2019  |  

Extensive horizontal gene transfer in cheese-associated bacteria.

Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4733 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that HGT is prevalent in cheese rind microbiomes, and that identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019  |  

The microbiota of freshwater fish and freshwater niches contain omega-3 producing Shewanella species.

Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


September 22, 2019  |  

Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality. Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.


September 22, 2019  |  

The Santa Pola saltern as a model for studying the microbiota of hypersaline environments.

Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10 % salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the different methodologies, the most relevant contributions for understanding the ecology of these extreme environments and the future perspectives for such studies.


September 22, 2019  |  

Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum.

Rhizobium leguminosarum bv. viciae is a soil a-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae, 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.


September 22, 2019  |  

Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone.

The N2-fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N2was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N2fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale.© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios.

Vibrios are among the most diverse and ecologically important marine bacteria, which have evolved many characteristics and lifestyles to occupy various niches. The relationship between genome features and environmental adaptation strategies is an essential part for understanding the ecological functions of vibrios in the marine system. The advent of complete genome sequencing technology has provided an important method of examining the genetic characteristics of vibrios on the genomic level.Two Vibrio genomes were sequenced and found to occupy many unique orthologues families which absent from the previously genes pool of the complete genomes of vibrios. Comparative genomics analysis found vibrios encompass a steady core-genome and tremendous pan-genome with substantial gene gain and horizontal gene transfer events in the evolutionary history. Evolutionary analysis based on the core-genome tree suggested that V. fischeri emerged ~?385 million years ago, along with the occurrence of cephalopods and the flourish of fish. The relatively large genomes, the high number of 16S rRNA gene copies, and the presence of R-M systems and CRISPR system help vibrios live in various marine environments. Chitin-degrading related genes are carried in nearly all the Vibrio genomes. The number of chitinase genes in vibrios has been extremely expanded compared to which in the most recent ancestor of the genus. The chitinase A genes were estimated to have evolved along with the genus, and have undergone significant purifying selective force to conserve the ancestral state.Vibrios have experienced extremely genome expansion events during their evolutionary history, allowing them to develop various functions to spread globally. Despite their close phylogenetic relationships, vibrios were found to have a tremendous pan-genome with a steady core-genome, which indicates the highly plastic genome of the genus. Additionally, the existence of various chitin-degrading related genes and the expansion of chitinase A in the genus demonstrate the importance of the chitin utilization for vibrios. Defensive systems in the Vibrio genomes may protect them from the invasion of external DNA. These genomic features investigated here provide a better knowledge of how the evolutionary process has forged Vibrio genomes to occupy various niches.


September 22, 2019  |  

Cultivation-independent and cultivation-dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao island, Taiwan: Unmasking heterotrophic bacterial diversity and functional capacity.

Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.