Menu
June 1, 2021  |  

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads are dominated by insertions and deletions. High-performance implementations of such algorithms allow more efficient de novo assembly with a pre-assembly step that generates highly accurate, consensus-based reads which can be used as input for existing genome assemblers. In contrast to recent hybrid assembly approach, only a single ~10 kb or longer SMRTbell library is necessary for the hierarchical genome assembly process (HGAP). Meanwhile, with a sensitive read-clustering algorithm with the consensus algorithms, one is able to discern haplotypes that differ by less than 1% different from each other over a large region. One of the related applications is to generate accurate haplotype sequences for HLA loci. Long sequence reads that can cover the whole 3 kb to 4 kb diploid genomic regions will simplify the haplotyping process. These algorithms can also be applied to resolve individual populations within mixed pools of DNA molecules that are similar to each, e.g., by sequencing viral quasi-species samples.


June 1, 2021  |  

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome using long-read sequencing

Sequence-based estimation of genetic diversity of Plasmodium falciparum, the most lethal malarial parasite, has proved challenging due to a lack of a complete genomic assembly. The skewed AT-richness (~80.6% (A+T)) of its genome and the lack of technology to assemble highly polymorphic sub-telomeric regions that contain clonally variant, multigene virulence families (i.e. var and rifin) have confounded attempts using short-read NGS technologies. Using single molecule, real-time (SMRT) sequencing, we successfully compiled all 14 nuclear chromosomes of the P. falciparum genome from telomere-to-telomere in single contigs. Specifically, amplification-free sequencing generated reads of average length 12 kb, with =50% of the reads between 15.5 and 50 kb in length. A hierarchical genome assembly process (HGAP), was used to assemble the P. falciparum genome de novo. This assembly accurately resolved centromeres (~90-99% (A+T)) and sub-telomeric regions, and identified large insertions and duplications in the genome that added extra genes to the var and rifin virulence families, along with smaller structural variants such as homopolymer tract expansions. These regions can be used as markers for genetic diversity during comparative genome analyses. Moreover, identifying the polymorphic and repetitive sub-telomeric sequences of parasite populations from endemic areas might inform the link between structural variation and phenotypes such as virulence, drug resistance and disease transmission.


June 1, 2021  |  

A low DNA input protocol for high-quality PacBio de novo genome assemblies

A high-quality reference genome is an essential tool for studying the genetics of traits and disease, organismal, comparative and conservation biology, and population genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives. However, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that may have lower DNA content or on projects with limited input DNA for other reasons. Here we present a modified SMRTbell library construction protocol without DNA shearing or size selection that can be used to generate a SMRTbell library from just 150 ng of starting genomic DNA. Remarkably, the protocol enables high quality de novo assemblies from single invertebrate individuals and is applied to taxonomically diverse samples. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating ~11 Gb of sequence per SMRT Cell with 10 hour movies, and followed by de novo genome assembly with FALCON. The resulting assemblies had high contiguity (contig N50s over 1 Mb) and completeness (as determined by conserved BUSCO gene analysis) when at least 30-fold unique molecular coverage is obtained. This new low-input approach now puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life. The method presented here is scalable and can be applied to samples with starting DNA amounts of 150 ng per 300 Mb genome size.


June 1, 2021  |  

Every species can be a model: Reference-quality PacBio genomes from single insects

A high-quality reference genome is an essential resource for primary and applied research across the tree of life. Genome projects for small-bodied, non-model organisms such as insects face several unique challenges including limited DNA input quantities, high heterozygosity, and difficulty of culturing or inbreeding in the lab. Recent progress in PacBio library preparation protocols, sequencing throughput, and read accuracy address these challenges. We present several case studies including the Red Admiral (Vanessa atalanta), Monarch Butterfly (Danaus plexippus), and Anopheles malaria mosquitoes that highlight the benefits of sequencing single individuals for de novo genome assembly projects, and the ease at which these projects can be conducted by individual research labs. Sampled individuals may originate from lab colonies of interest to the research community or be sourced from the wild to better capture natural variation in a focal population. Where genomic DNA quantities are limited, the PacBio Low DNA Input Protocol requires ~100 ng of input DNA. Low DNA input samples with 500 Mb genome size or less can be multiplexed on a single SMRT Cell 8M on the Sequel II System. For samples with more abundant DNA quantity, size-selected libraries may be constructed to maximize sequencing yield. Both low DNA input and size-selected libraries can be used to generate HiFi reads, whose quality is Q20 or above (1% error or less) and lengths range from 10 – 25 kb. With HiFi reads, de novo assembly computation is greatly simplified relative to long read methods due to smaller sequence file sizes and more rapid analysis, resulting in highly accurate, contiguous, complete, and haplotype-resolved assemblies.


April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies

Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from textquoteleftfinishedtextquoteright. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies.Results We employed three gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: six with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and three with new assemblies based on re-scaffolding or Pacific Biosciences long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: seven for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further seven with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi.Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our comparisons show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.ADADSEQAGOAGOUTI-basedAGOUTIannotated genome optimization using transcriptome information toolALNalignment-basedCAMSAcomparative analysis and merging of scaffold assemblies toolDPdynamic programmingFISHfluorescence in situ hybridizationGAGOS-ASMGOS-ASMGene order scaffold assemblerKbpkilobasepairsMbpmegabasepairsOSORTHOSTITCHPacBioPacific BiosciencesPBPacBio-basedPHYphysical-mapping-basedRNAseqRNA sequencingQTLquantitative trait lociSYNsynteny-based.


April 21, 2020  |  

Morphological and genomic characterisation of the hybrid schistosome infecting humans in Europe reveals a complex admixture between Schistosoma haematobium and Schistosoma bovis parasites

Schistosomes cause schistosomiasis, the worldtextquoterights second most important parasitic disease after malaria. A peculiar feature of schistosomes is their ability to produce viable and fertile hybrids. Originally only present in the tropics, schistosomiasis is now also endemic in Europe. Based on two genetic markers the European species had been identified as a hybrid between the ruminant-infective Schistosoma bovis and the human-infective Schistosoma haematobium.Here we describe for the first time the genomic composition of the European schistosome hybrid (77% of S. haematobium and 23% of S. bovis origins), its morphometric parameters and its compatibility with the European vector snail and intermediate host Compatibility is a key parameter for the parasites life cycle progression. We also show that egg morphology (a classical diagnostic parameter) does not allow for differential diagnosis while genetic tests do so. Additionally, we performed genome assembly improvement and annotation of S. bovis, the parental species for which no satisfactory genome assembly was available.For the first time since the discovery of hybrid schistosomes, these results reveal at the whole genomic level a complex admixture of parental genomes highlighting (i) the high permeability of schistosomes to other speciestextquoteright alleles, and (ii) the importance of hybrid formation for pushing species boundaries not only conceptionally but also geographically.


April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

A chromosome-scale assembly of the major African malaria vector Anopheles funestus.

Anopheles funestus is one of the 3 most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito.Here we present a new high-quality A. funestus reference genome (AfunF3) assembled using 240× coverage of long-read single-molecule sequencing for contigging, combined with 100× coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1.This highly contiguous and complete A. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.