October 23, 2019  |  

Galactofuranose in Mycoplasma mycoides is important for membrane integrity and conceals adhesins but does not contribute to serum resistance.

Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M.?mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-?glf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also ‘leaking’ as revealed by a ß-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

September 22, 2019  |  

A novel lactobacilli-based teat disinfectant for improving bacterial communities in the milks of cow teats with subclinical mastitis.

Teat disinfection pre- and post-milking is important for the overall health and hygiene of dairy cows. The objective of this study was to evaluate the efficacy of a novel probiotic lactobacilli-based teat disinfectant based on changes in somatic cell count (SCC) and profiling of the bacterial community. A total of 69 raw milk samples were obtained from eleven Holstein-Friesian dairy cows over 12 days of teat dipping in China. Single molecule, real-time sequencing technology (SMRT) was employed to profile changes in the bacterial community during the cleaning protocol and to compare the efficacy of probiotic lactic acid bacteria (LAB) and commercial teat disinfectants. The SCC gradually decreased following the cleaning protocol and the SCC of the LAB group was slightly lower than that of the commercial disinfectant (CD) group. Our SMRT sequencing results indicate that raw milk from both the LAB and CD groups contained diverse microbial populations that changed over the course of the cleaning protocol. The relative abundances of some species were significantly changed during the cleaning process, which may explain the observed bacterial community differences. Collectively, these results suggest that the LAB disinfectant could reduce mastitis-associated bacteria and improve the microbial environment of the cow teat. It could be used as an alternative to chemical pre- and post-milking teat disinfectants to maintain healthy teats and udders. In addition, the Pacific Biosciences SMRT sequencing with the full-length 16S ribosomal RNA gene was shown to be a powerful tool for monitoring changes in the bacterial population during the cleaning protocol.

September 22, 2019  |  

The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility.

Ticks are of medical importance owing to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Although ticks host pathogenic bacteria, they also harbor bacterial endosymbionts that have a role in tick physiology, survival, as well as pathogen acquisition and transmission. The goal of this study was to characterize the bacterial microbiome and examine the impact of microbiome disruption on pathogen susceptibility. The bacterial microbiome of two populations of D. andersoni with historically different susceptibilities to A. marginale was characterized. In this study, the microbiome was disrupted and then ticks were exposed to A. marginale or Francisella novicida to determine whether the microbiome correlated with pathogen susceptibility. Our study showed that an increase in proportion and quantity of Rickettsia bellii in the microbiome was negatively correlated to A. marginale levels in ticks. Furthermore, a decrease in Francisella endosymbionts was associated with lower F. novicida infection levels, demonstrating a positive pathogen-endosymbiont relationship. We demonstrate that endosymbionts and pathogens have varying interactions, and suggest that microbiome manipulation may provide a possible method for biocontrol by decreasing pathogen susceptibility of ticks.

September 22, 2019  |  

Tn6450, a novel multidrug resistance transposon characterized in a Proteus mirabilis isolate from chicken in China.

A novel 65.8-kb multidrug resistance transposon, designated Tn6450, was characterized in a Proteus mirabilis isolate from chicken in China. Tn6450 contains 18 different antimicrobial resistance genes, including cephalosporinase gene blaDHA-1 and fluoroquinolone resistance genes qnrA1 and aac(6′)-Ib-cr It carries a class 1/2 hybrid integron composed of intI2 and a 3′ conserved segment of the class 1 integron. Tn6450 is derived from Tn7 via acquisition of new mobile elements and resistance genes. Copyright © 2018 American Society for Microbiology.

September 22, 2019  |  

Basic characterization of natural transformation in a highly transformable Haemophilus parasuis strain SC1401.

Haemophilus parasuis causes Glässer’s disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.

September 22, 2019  |  

Genome-wide analysis of Mycoplasma bovirhinis GS01 reveals potential virulence factors and phylogenetic relationships.

Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis, distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis. Copyright © 2018 Chen et al.

September 22, 2019  |  

Discovery of multi-drug resistant, MCR-1 and ESBL-coproducing ST117 Escherichia coli from diseased chickens in Northeast China

An endemic multi-drug resistant ST117 E. coli isolate coproducing MCR-1 and 3 ESBL loci was, for the first time, detected from diseased chicken, Liaoning Province, in Northeast China, from 2011 to 2012. Whole-genome sequencing revealed 5 unique plasmids, namely pHXH-1, pHXH-2, pHXH-3, pHXH-4 and pHXH-5). Among them, pHXH1 and pHXH4 encode ESBL, and pHXH-5 mediates MCR-1 colistin resistance. The results indicate that the potentially-national dissemination of MCR-1-positive pathogens with pan-drug resistance proceeds via food chains.

September 22, 2019  |  

Prevalence and genomic structure of bacteriophage phi3 in human derived livestock-associated MRSA from 2000 to 2015.

Whereas the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) in animal husbandry and its transmission to humans are well documented, less is known about factors driving the epidemic spread of this zoonotic lineage within the human population. One factor could be the bacteriophage phi3, which is rarely detected in S. aureus isolates from animals but commonly found among isolates from humans, including those of the human-adapted methicillin-susceptible S. aureus (MSSA) CC398 clade. The proportion of phi3-carrying MRSA spa-CC011 isolates, which constitute presumptively LA-MRSA within the multilocus sequence type (MLST) clonal complex 398, was systematically assessed for a period of 16 years to investigate the role of phi3 in the adaptation process of LA-MRSA to the human host. For this purpose, 632 MRSA spa-CC011 isolates from patients of a university hospital located in a pig farming-dense area in Germany were analyzed. Livestock-associated acquisition of MRSA spa-CC011 was previously reported as having increased from 1.8% in 2000 to 29.4% in 2014 in MRSA-positive patients admitted to this hospital. However, in this study, the proportion of phi3-carrying isolates rose only from 1.1% (2000 to 2006) to 3.9% (2007 to 2015). Characterization of the phi3 genomes revealed 12 different phage types ranging in size from 40,712 kb up to 44,003 kb, with four hitherto unknown integration sites (genes or intergenic regions) and several modified bacterial attachment (attB) sites. In contrast to the MSSA CC398 clade, phi3 acquisition seems to be no major driver for the readaptation of MRSA spa-CC011 to the human host. Copyright © 2018 American Society for Microbiology.

September 22, 2019  |  

Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-blaCTXM-1 plasmid among Escherichia coli in pigs.

This study investigated the ecology, epidemiology and plasmid characteristics of extended-spectrum cephalosporin (ESC)-resistant E. coli in healthy pigs over a period of 4 years (2013-2016) following the withdrawal of ESCs. High carriage rates of ESC-resistant E. coli were demonstrated in 2013 (86.6%) and 2014 (83.3%), compared to 2015 (22%) and 2016 (8.5%). ESC resistance identified among E. coli isolates was attributed to the carriage of an IncI1 ST-3 plasmid (pCTXM1-MU2) encoding blaCTXM-1. Genomic characterisation of selected E. coli isolates (n?=?61) identified plasmid movement into multiple commensal E. coli (n?=?22 STs). Major STs included ST10, ST5440, ST453, ST2514 and ST23. A subset of the isolates belong to the atypical enteropathogenic E. coli (aEPEC) pathotype that harboured multiple LEE pathogenic islands. pCTXM1-MU2 was similar (99% nt identity) to IncI1-ST3 plasmids reported from Europe, encoded resistance to aminoglycosides, sulphonamides and trimethoprim, and carried colicin Ib. pCTXM1-MU2 appears to be highly stable and readily transferable. This study demonstrates that ESC resistance may persist for a protracted period following removal of direct selection pressure, resulting in the emergence of ESC-resistance in both commensal E. coli and aEPEC isolates of potential significance to human and animal health.

September 22, 2019  |  

Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates.

Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.

September 22, 2019  |  

Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens.

Macrococcus caseolyticus is generally considered to be a non-pathogenic bacterium that does not cause human or animal diseases. However, recently, a strain of M. caseolyticus (SDLY strain) that causes high mortality rates was isolated from commercial broiler chickens in China. The main pathological changes caused by SDLY included caseous exudation in cranial cavities, inflammatory infiltration, haemorrhages and multifocal necrosis in various organs. The whole genome of the SDLY strain was sequenced and was compared with that of the non-pathogenic JCSC5402 strain of M. caseolyticus. The results showed that the SDLY strain harboured a large quantity of mutations, antibiotic resistance genes and numerous insertions and deletions of virulence genes. In particular, among the inserted genes, there is a cluster of eight connected genes associated with the synthesis of capsular polysaccharide. This cluster encodes a transferase and capsular polysaccharide synthase, promotes the formation of capsules and causes changes in pathogenicity. Electron microscopy revealed a distinct capsule surrounding the SDLY strain. The pathogenicity test showed that the SDLY strain could cause significant clinical symptoms and pathological changes in both SPF chickens and mice. In addition, these clinical symptoms and pathological changes were the same as those observed in field cases. Furthermore, the anti-microbial susceptibility test demonstrated that the SDLY strain exhibits multiple-antibiotic resistance. The emergence of pathogenic M. caseolyticus indicates that more attention should be paid to the effects of this micro-organism on both poultry and public health.© 2018 Blackwell Verlag GmbH.

September 22, 2019  |  

Novel linezolid resistance plasmids in Enterococcus from food animals in the USA.

To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme.Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible.Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3′)-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant.To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.

July 19, 2019  |  

A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data.

Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain’s association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences’ Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.

July 19, 2019  |  

Large genomic differences between Moraxella bovoculi isolates acquired from the eyes of cattle with infectious bovine keratoconjunctivitis versus the deep nasopharynx of asymptomatic cattle.

Moraxella bovoculi is a recently described bacterium that is associated with infectious bovine keratoconjunctivitis (IBK) or “pinkeye” in cattle. In this study, closed circularized genomes were generated for seven M. bovoculi isolates: three that originated from the eyes of clinical IBK bovine cases and four from the deep nasopharynx of asymptomatic cattle. Isolates that originated from the eyes of IBK cases profoundly differed from those that originated from the nasopharynx of asymptomatic cattle in genome structure, gene content and polymorphism diversity and consequently placed into two distinct phylogenetic groups. These results suggest that there are genetically distinct strains of M. bovoculi that may not associate with IBK.

July 19, 2019  |  

First report of two complete Clostridium chauvoei genome sequences and detailed in silico genome analysis.

Clostridium (C.) chauvoei is a Gram-positive, spore forming, anaerobic bacterium. It causes black leg in ruminants, a typically fatal histotoxic myonecrosis. High quality circular genome sequences were generated for the C. chauvoei type strain DSM 7528(T) (ATCC 10092(T)) and a field strain 12S0467 isolated in Germany. The origin of replication (oriC) was comparable to that of Bacillus subtilis in structure with two regions containing DnaA boxes. Similar prophages were identified in the genomes of both C. chauvoei strains which also harbored hemolysin and bacterial spore formation genes. A CRISPR type I-B system with limited variations in the repeat number was identified. Sporulation and germination process related genes were homologous to that of the Clostridia cluster I group but novel variations for regulatory genes were identified indicative for strain specific control of regulatory events. Phylogenomics showed a higher relatedness to C. septicum than to other so far sequenced genomes of species belonging to the genus Clostridium. Comparative genome analysis of three C. chauvoei circular genome sequences revealed the presence of few inversions and translocations in locally collinear blocks (LCBs). The species genome also shows a large number of genes involved in proteolysis, genes for glycosyl hydrolases and metal iron transportation genes which are presumably involved in virulence and survival in the host. Three conserved flagellar genes (fliC) were identified in each of the circular genomes. In conclusion this is the first comparative analysis of circular genomes for the species C. chauvoei, enabling insights into genome composition and virulence factor variation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.