June 1, 2021  |  

The Wild Vigna

PacBio 2015 User Group Meeting Presentation Slides: Ken Naito of the NIAS Genetic Resource Center presented on whole genome sequencing of the azuki bean (Vigna angularis). Using single molecule real-time (SMRT) sequencing technology, they achieved the best contiguity and coverage among currently assembled legume crops.

April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.

April 21, 2020  |  

Genome data of Fusarium oxysporum f. sp. cubense race 1 and tropical race 4 isolates using long-read sequencing.

Fusarium wilt of banana is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. cubense (Foc). We generated two chromosome-level assemblies of Foc race 1 and tropical race 4 strains using single-molecule real-time sequencing. The Foc1 and FocTR4 assemblies had 35 and 29 contigs with contig N50 lengths of 2.08 Mb and 4.28 Mb, respectively. These two new references genomes represent a greater than 100-fold improvement over the contig N50 statistics of the previous short read-based Foc assemblies. The two high-quality assemblies reported here will be a valuable resource for the comparative analysis of Foc races at the pathogenic levels.

April 21, 2020  |  

Draft Genome Assembly and Annotation of Red Raspberry Rubus Idaeus

The red raspberry, Rubus idaeus, is widely distributed in all temperate regions of Europe, Asia, and North America and is a major commercial fruit valued for its taste, high antioxidant and vitamin content. However, Rubus breeding is a long and slow process hampered by limited genomic and molecular resources. Genomic resources such as a complete genome sequencing and transcriptome will be of exceptional value to improve research and breeding of this high value crop. Using a hybrid sequence assembly approach including data from both long and short sequence reads, we present the first assembly of the Rubus idaeus genome (Joan J. variety). The de novo assembled genome consists of 2,145 scaffolds with a genome completeness of 95.3% and an N50 score of 638 KB. Leveraging a linkage map, we anchored 80.1% of the genome onto seven chromosomes. Using over 1 billion paired-end RNAseq reads, we annotated 35,566 protein coding genes with a transcriptome completeness score of 97.2%. The Rubus idaeus genome provides an important new resource for researchers and breeders.

April 21, 2020  |  

Chromosome-level assembly of the common lizard (Zootoca vivipara) genome

Squamate reptiles exhibit high variation in their traits and geographical distribution and are therefore fascinating taxa for evolutionary and ecological research. However, high-quality genomic recourses are very limited for this group of species, which inhibits some research efforts. To address this gap, we assembled a high-quality genome of the common lizard Zootoca vivipara (Lacertidae) using a combination of high coverage Illumina (shotgun and mate-pair) and PacBio sequence data, with RNAseq data and genetic linkage maps. The 1.46 Gbp genome assembly has scaffold N50 of 11.52 Mbp with N50 contig size of 220.4 Kbp and only 2.96% gaps. A BUSCO analysis indicates that 97.7% of the single-copy Tetrapoda orthologs were recovered in the assembly. In total 19,829 gene models were annotated in the genome using a combination of three ab initio and homology-based methods. To improve the chromosome-level assembly, we generated a high-density linkage map from wild-caught families and developed a novel analytical pipeline to accommodate multiple paternity and unknown father genotypes. We successfully anchored and oriented almost 90% of the genome on 19 linkage groups. This annotated and oriented chromosome-level reference genome represents a valuable resource to facilitate evolutionary studies in squamate reptiles.

April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

April 21, 2020  |  

Early Sex-chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua.

Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about a third of the Y chromosome has ceased recombining, containing 568 transcripts and spanning 22.3 cM in the corresponding female map. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining about one million years ago. Patterns of gene expression within the non-recombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.Copyright © 2019, Genetics.

April 21, 2020  |  

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage.This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. © The Author(s) 2019. Published by Oxford University Press.

April 21, 2020  |  

A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.

In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.

April 21, 2020  |  

Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence.

Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets-a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.

April 21, 2020  |  

Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

April 21, 2020  |  

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.

April 21, 2020  |  

Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis.

Colletotrichum lentis causes anthracnose, which is a serious disease on lentil and can account for up to 70% crop loss. Two pathogenic races, 0 and 1, have been described in the C. lentis population from lentil. To unravel the genetic control of virulence, an isolate of the virulent race 0 was sequenced at 1481-fold genomic coverage. The 56.10-Mb genome assembly consists of 50 scaffolds with N50 scaffold length of 4.89 Mb. A total of 11 436 protein-coding gene models was predicted in the genome with 237 coding candidate effectors, 43 secondary metabolite biosynthetic enzymes and 229 carbohydrate-active enzymes (CAZymes), suggesting a contraction of the virulence gene repertoire in C. lentis. Scaffolds were assigned to 10 core and two minichromosomes using a population (race 0 × race 1, n = 94 progeny isolates) sequencing-based, high-density (14 312 single nucleotide polymorphisms) genetic map. Composite interval mapping revealed a single quantitative trait locus (QTL), qClVIR-11, located on minichromosome 11, explaining 85% of the variability in virulence of the C. lentis population. The QTL covers a physical distance of 0.84 Mb with 98 genes, including seven candidate effector and two secondary metabolite genes. Taken together, the study provides genetic and physical evidence for the existence of a minichromosome controlling the C. lentis virulence on lentil. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

April 21, 2020  |  

Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology.

In present study, single molecule-real time sequencing technology was used to obtain a validated set of microsatellite markers for application in population genetics of the primitive fish, Chitala chitala. Assembly of circular consensus sequencing reads resulted into 1164 sequences which contained 2005 repetitive motifs. A total of 100 sequences were used for primer designing and amplification yielded a set of 28 validated polymorphic markers. These loci were used to genotype n?=?72 samples from three distant riverine populations of India, namely Son, Satluj and Brahmaputra, for determining intraspecific genetic variation. The microsatellite loci exhibited high level of polymorphism with PIC values ranging from 0.281 to 0.901. The genetic parameters revealed that mean heterozygosity ranged from 0.6802 to 0.6826 and the populations were found to be genetically diverse (Fst 0.03-0.06). This indicated the potential application of these microsatellite marker set that can used for stock characterization of C. chitala, in the wild. These newly developed loci were assayed for cross transferability in another notopterid fish, Notopterus notopterus.

April 21, 2020  |  

The red bayberry genome and genetic basis of sex determination.

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.