April 21, 2020  |  

Chromosome-level assembly of the common lizard (Zootoca vivipara) genome

Authors: Yurchenko, Andrey A and Recknagel, Hans and Elmer, Kathryn R

Squamate reptiles exhibit high variation in their traits and geographical distribution and are therefore fascinating taxa for evolutionary and ecological research. However, high-quality genomic recourses are very limited for this group of species, which inhibits some research efforts. To address this gap, we assembled a high-quality genome of the common lizard Zootoca vivipara (Lacertidae) using a combination of high coverage Illumina (shotgun and mate-pair) and PacBio sequence data, with RNAseq data and genetic linkage maps. The 1.46 Gbp genome assembly has scaffold N50 of 11.52 Mbp with N50 contig size of 220.4 Kbp and only 2.96% gaps. A BUSCO analysis indicates that 97.7% of the single-copy Tetrapoda orthologs were recovered in the assembly. In total 19,829 gene models were annotated in the genome using a combination of three ab initio and homology-based methods. To improve the chromosome-level assembly, we generated a high-density linkage map from wild-caught families and developed a novel analytical pipeline to accommodate multiple paternity and unknown father genotypes. We successfully anchored and oriented almost 90% of the genome on 19 linkage groups. This annotated and oriented chromosome-level reference genome represents a valuable resource to facilitate evolutionary studies in squamate reptiles.

Journal: BioRxiv
DOI: 10.1101/520528
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.