Menu
April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.


April 21, 2020  |  

Whole-Genome Sequences of Five Acinetobacter baumannii Strains From a Child With Leukemia M2.

Acinetobacter baumannii is an opportunistic pathogen and is one of the primary etiological agents of healthcare-associated infections (HAIs). A. baumannii infections are difficult to treat due to the intrinsic and acquired antibiotic resistance of strains of this bacterium, which frequently limits therapeutic options. In this study, five A. baumannii strains (810CP, 433H, 434H, 483H, and A-2), all of which were isolated from a child with leukemia M2, were characterized through antibiotic susceptibility profiling, the detection of genes encoding carbapenem hydrolyzing oxacillinases, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), adherence and invasion assays toward the A549 cell line, and the whole-genome sequence (WGS). The five strains showed Multidrug resistant (MDR) profiles and amplification of the blaOXA-23 gene, belonging to ST758 and grouped into two PFGE clusters. WGS of 810CP revealed the presence of a circular chromosome and two small plasmids, pAba810CPa and pAba810CPb. Both plasmids carried genes encoding the Sp1TA system, although resistance genes were not identified. A gene-by-gene comparison analysis was performed among the A. baumannii strains isolated in this study and others A. baumannii ST758 strains (HIMFG and INCan), showing that 86% of genes were present in all analyzed strains. Interestingly, the 433H, 434H, and 483H strains varied by 8-10 single-nucleotide variants (SNVs), while the A2 and 810CP strains varied by 46 SNVs. Subsequently, an analysis using BacWGSTdb showed that all of our strains had the same resistance genes and were ST758. However, some variations were observed in relation to virulence genes, mainly in the 810CP strain. The genes involved in the synthesis of hepta-acylated lipooligosaccharides, the pgaABCD locus encoding poly-ß-1-6-N-acetylglucosamine, the ompA gene, Csu pili, bap, the two-component system bfms/bfmR, a member of the phospholipase D family, and two iron-uptake systems were identified in our A. baumannii strains genome. The five A. baumannii strains isolated from the child were genetically different and showed important characteristics that promote survival in a hospital environment. The elucidation of their genomic sequences provides important information for understanding their epidemiology, antibiotic resistance, and putative virulence factors.


April 21, 2020  |  

Characterization of a male specific region containing a candidate sex determining gene in Atlantic cod.

The genetic mechanisms determining sex in teleost fishes are highly variable and the master sex determining gene has only been identified in few species. Here we characterize a male-specific region of 9?kb on linkage group 11 in Atlantic cod (Gadus morhua) harboring a single gene named zkY for zinc knuckle on the Y chromosome. Diagnostic PCR test of phenotypically sexed males and females confirm the sex-specific nature of the Y-sequence. We identified twelve highly similar autosomal gene copies of zkY, of which eight code for proteins containing the zinc knuckle motif. 3D modeling suggests that the amino acid changes observed in six copies might influence the putative RNA-binding specificity. Cod zkY and the autosomal proteins zk1 and zk2 possess an identical zinc knuckle structure, but only the Y-specific gene zkY was expressed at high levels in the developing larvae before the onset of sex differentiation. Collectively these data suggest zkY as a candidate master masculinization gene in Atlantic cod. PCR amplification of Y-sequences in Arctic cod (Arctogadus glacialis) and Greenland cod (Gadus macrocephalus ogac) suggests that the male-specific region emerged in codfishes more than 7.5 million years ago.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


April 21, 2020  |  

Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids.

Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids.We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations.Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.


October 23, 2019  |  

Altering tropism of rAAV by directed evolution.

Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated.


October 23, 2019  |  

AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.


October 23, 2019  |  

Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector.

Zinc finger nucleases (ZFNs) are promising tools for genome editing for biotechnological as well as therapeutic purposes. Delivery remains a major issue impeding targeted genome modification. Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells and into organs, such as the liver. However, the reverse transcription of lentiviral vectors leads to recombination of homologous sequences, as found between and within ZFN monomers.We used a codon swapping strategy to both drastically disrupt sequence identity between ZFN monomers and to reduce sequence repeats within a monomer sequence. We constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from a single mRNA transcript. Cell lines, primary hepatocytes and newborn rats were used to evaluate the efficacy of integrative-competent (ICLV) and integrative-deficient (IDLV) lentiviral vectors to deliver ZFNs into target cells.We reduced total identity between ZFN monomers from 90.9% to 61.4% and showed that a single ICLV allowed efficient expression of functional ZFNs targeting the rat UGT1A1 gene after codon-swapping, leading to much higher ZFN activity in cell lines (up to 7-fold increase compared to unmodified ZFNs and 60% activity in C6 cells), as compared to plasmid transfection or a single ICLV encoding unmodified ZFN monomers. Off-target analysis located several active sites for the 5-finger UGT1A1-ZFNs. Furthermore, we reported for the first time successful ZFN-induced targeted DNA double-strand breaks in primary cells (hepatocytes) and in vivo (liver) after delivery of a single IDLV encoding two ZFNs.These results demonstrate that a codon-swapping approach allowed a single lentiviral vector to efficiently express ZFNs and should stimulate the use of this viral platform for ZFN-mediated genome editing of primary cells, for both ex vivo or in vivo applications.


October 23, 2019  |  

Controlled delivery of ß-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection.

Tal-effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated (Cas) proteins are genome editing tools with unprecedented potential. However, the ability to deliver optimal amounts of these nucleases into mammalian cells with minimal toxicity poses a major challenge. Common delivery approaches are transfection- and viral-based methods; each associated with significant drawbacks. An alternative method for directly delivering genome-editing reagents into single living cells with high efficiency and controlled volume is microinjection. Here, we characterize a glass microcapillary-based injection system and demonstrate controlled co-injection of TALENs or CRISPR/Cas9 together with donor template into single K562 cells for targeting the human ß-globin gene. We quantified nuclease induced insertions and deletions (indels) and found that, with ß-globin-targeting TALENs, similar levels of on- and off-target activity in cells could be achieved by microinjection compared with nucleofection. Furthermore, we observed 11% and 2% homology directed repair in single K562 cells co-injected with a donor template along with CRISPR/Cas9 and TALENs respectively. These results demonstrate that a high level of targeted gene modification can be achieved in human cells using glass-needle microinjection of genome editing reagents.


October 23, 2019  |  

Sites of retroviral DNA integration: From basic research to clinical applications.

One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.


October 23, 2019  |  

CRISPR/Cas9-generated p47(phox)-deficient cell line for Chronic Granulomatous Disease gene therapy vector development.

Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47(phox)-deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (?GT) mutation in p47(phox) encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47(phox)-subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47(phox) CGD patients carries ?GT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ?GT cell line reflects the most frequent form of p47(phox)-deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.


October 23, 2019  |  

CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions.

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion (“ScanDel”). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation. Copyright © 2017 American Society of Human Genetics. All rights reserved.


October 23, 2019  |  

Structural determination of the broadly reactive anti-IGHV1-69 anti-idiotypic antibody G6 and its idiotope.

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.


October 23, 2019  |  

Transmission, evolution, and endogenization: Lessons learned from recent retroviral invasions.

Viruses of the subfamily Orthoretrovirinaeare defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and “fossil” endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions. Copyright © 2017 American Society for Microbiology.


October 23, 2019  |  

Nuclease-mediated gene editing by homologous recombination of the human globin locus.

Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and ß-thalassemia are common genetic disorders caused by mutations in ß-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human ß-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous ß-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human ?-globin, a pharmacologic target in sickle cell disease therapy. Using the ß-globin and ?-globin TALENs, we generated cell lines that express GFP under the control of the endogenous ß-globin promoter and tdTomato under the control of the endogenous ?-globin promoter. With these fluorescent reporter cell lines, we screened a library of small molecule compounds for their differential effect on the transcriptional activity of the endogenous ß- and ?-globin genes and identified several that preferentially upregulate ?-globin expression.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.