We have streamlined the SMRTbell library generation protocols with improved workflows to deliver seamless end-to-end solutions from sample to analysis. A key improvement is the development of a single-tube reaction strategy that shortened hands-on time needed to generate each SMRTbell library, reduced time-consuming AM Pure purification steps, and minimized sample-handling induced gDNA damage to improve the integrity of long-insert SMRTbell templates for sequencing. The improved protocols support all large-insert genomic libraries, multiplexed microbial genomes, and amplicon sequencing. These advances enable completion of library preparation in less than a day (approximately 4 hours) and opens opportunities for automated library preparation for…
Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.
Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…
The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for obtaining complete microbial genome assemblies with multiplexed sequencing. By using a single-tube, addition-only strategy, the streamlined workflow reduces…
In this PacBio User Group Meeting presentation, PacBio scientist Meredith Ashby shared several examples of analysis — from full-length 16S sequencing to shotgun sequencing — showing how SMRT Sequencing enables accurate representation for metagenomics and microbiome characterization, in some cases even without fully assembling genomes. New updates will provide users with a dedicated microbial assembly pipeline, optimized for all classes of bacteria, as well as increased multiplexing on the Sequel II System, now with 48 validated barcoded adapters. That throughput could reduce the cost of microbial analysis substantially.
In this PacBio User Group Meeting presentation, Eugenio Daviso from Covaris talks about the use of adaptive focused acoustics for gentle cell lysis and extraction of high molecular weight DNA.
Understanding interactions among plants and the complex communities of organisms living on, in and around them requires more than one experimental approach. A new method for de novo metagenome assembly, PacBio HiFi sequencing, has unique strengths for determining the functional capacity of metagenomes. With HiFi sequencing, the accuracy and median read length of unassembled data outperforms the quality metrics for many existing assemblies generated with other technologies, enabling cost-competitive recovery of full-length genes and operons even from rare species. When paired with the ability to close the genomes of even challenging isolates like Xanthomonas, the PacBio Sequel II System is…
Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.
The DNA base modification N6-methyladenine (m6A) is involved in many pathways related to the survival of bacteria and their interactions with hosts. Nanopore sequencing offers a new, portable method to detect base modifications. Here, we show that a neural network can improve m6A detection at trained sequence contexts compared to previously published methods using deviations between measured and expected current values as each adenine travels through a pore. The model, implemented as the mCaller software package, can be extended to detect known or confirm suspected methyltransferase target motifs based on predictions of methylation at untrained contexts. We use PacBio, Oxford…
Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5%…
Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of…
Whole genome sequencing (WGS), using high throughput sequencing technology, reveals the complete sequence of the bacterial genome in a few days. WGS is increasingly being used for source tracking, pathogen surveillance and outbreak investigation due to its high discriminatory power. In the food industry, WGS used for source tracking is beneficial to support contamination investigations. Despite its increased use, no standards or guidelines are available today for the use of WGS in outbreak and/or trace-back investigations. Here we present a validation of our complete (end-to-end) WGS workflow for Listeria monocytogenes and Salmonella enterica including: subculture of isolates, DNA extraction, sequencing…
The potential of newly isolated Lactobacillus amylolyticus L6 as probiotics was investigated based on the whole genome sequence and corresponding phenotypes. With Lactobacillus acidophilus NCFM as positive control, several established methods of evaluating potential probiotics were performed on L. amylolyticus L6. The results indicated that L. amylolyticus L6 retained higher viability in human gastrointestinal (GI) tract and it also had strong inhibitory effect on pathogenic bacteria. Meanwhile, the candidate probiotics exhibited similar adhesion level as that of L. acidophilus NCFM in vitro test. As for carbohydrate utilization profile, L. amylolyticus L6 had high ability of utilizing raffinose and stachyose which…
The genus Paraburkholderia encompasses mostly environmental isolates with diverse predicted lifestyles. Genome analyses have shown that bacteriophages form a considerable portion of some Paraburkholderia genomes. Here, we analyzed the evolutionary history of prophages across all Paraburkholderia spp. Specifically, we investigated to what extent the presence of prophages and their distribution affect the diversity/diversification of Paraburkholderia spp., as well as to what extent phages coevolved with their respective hosts. Particular attention was given to the presence of CRISPR-Cas arrays as a reflection of past interactions with phages. We thus analyzed 36 genomes of Paraburkholderia spp., including those of 11 new strains,…
Listeria monocytogenes and Cronobacter sakazakii are notorious pathogens involved in numerous foodborne outbreaks after ingested contaminated food. Bacteriocins are natural food preservatives, some of which have antimicrobial activity comparable with antibiotics. In this study, a plasmid encoded novel bacteriocin BMP11 produced by Lactobacillus crustorum MN047 was innovatively identified by combining complete genome and LC-MS/MS. The BMP11 was found to have rich a-helix conformation after prediction. Moreover, the antimicrobial activity of BMP11 was verified after its heterologous expression in E. coli with 1280 and 640 AU/mL against L. monocytogenes and C. sakazakii, respectively. After purification by anion-exchange chromatography and HPLC, BMP11…