Menu
September 22, 2019  |  

Comparative genome and phenotypic analysis of three Clostridioides difficile strains isolated from a single patient provide insight into multiple infection of C. difficile.

Clostridioides difficile infections (CDI) have emerged over the past decade causing symptoms that range from mild, antibiotic-associated diarrhea (AAD) to life-threatening toxic megacolon. In this study, we describe a multiple and isochronal (mixed) CDI caused by the isolates DSM 27638, DSM 27639 and DSM 27640 that already initially showed different morphotypes on solid media.The three isolates belonging to the ribotypes (RT) 012 (DSM 27639) and 027 (DSM 27638 and DSM 27640) were phenotypically characterized and high quality closed genome sequences were generated. The genomes were compared with seven reference strains including three strains of the RT 027, two of the RT 017, and one of the RT 078 as well as a multi-resistant RT 012 strain. The analysis of horizontal gene transfer events revealed gene acquisition incidents that sort the strains within the time line of the spread of their RTs within Germany. We could show as well that horizontal gene transfer between the members of different RTs occurred within this multiple infection. In addition, acquisition and exchange of virulence-related features including antibiotic resistance genes were observed. Analysis of the two genomes assigned to RT 027 revealed three single nucleotide polymorphisms (SNPs) and apparently a regional genome modification within the flagellar switch that regulates the fli operon.Our findings show that (i) evolutionary events based on horizontal gene transfer occur within an ongoing CDI and contribute to the adaptation of the species by the introduction of new genes into the genomes, (ii) within a multiple infection of a single patient the exchange of genetic material was responsible for a much higher genome variation than the observed SNPs.


September 22, 2019  |  

Screening and genomic characterization of filamentous hemagglutinin-deficient Bordetella pertussis.

Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus.

Mutations in the beta-subunit of bacterial RNA polymerase (RpoB) cause resistance to rifampin (Rifr), a critical antibiotic for treatment of multidrug-resistantStaphylococcus aureus.In vitrostudies have shown that RpoB mutations confer decreased susceptibility to other antibiotics, but the clinical relevance is unknown. Here, by analyzing 7,099S. aureusgenomes, we demonstrate that the most prevalent RpoB mutations promote clinically relevant phenotypic plasticity resulting in the emergence of stableS. aureuslineages, associated with increased risk of therapeutic failure through generation of small-colony variants (SCVs) and coresistance to last-line antimicrobial agents. We found eight RpoB mutations that accounted for 93% (469/505) of the total number of Rifrmutations. The most frequently selected amino acid substitutions affecting residue 481 (H481N/Y) were associated with worldwide expansions of Rifrclones spanning decades. Recreating the H481N/Y mutations confirmed no impact onS. aureusgrowth, but the H481N mutation promoted the emergence of a subpopulation of stable RifrSCVs with reduced susceptibility to vancomycin and daptomycin. Recreating the other frequent RpoB mutations showed similar impacts on resistance to these last-line agents. We found that 86% of all Rifrisolates in our global sample carried the mutations promoting cross-resistance to vancomycin and 52% to both vancomycin and daptomycin. As four of the most frequent RpoB mutations confer only low-level Rifr, equal to or below some international breakpoints, we recommend decreasing these breakpoints and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these clinically deleterious mutations. IMPORTANCE Increasing antibiotic resistance in the major human pathogenStaphylococcus aureusis threatening the ability to treat patients with these infections. Recent laboratory studies suggest that mutations in the gene commonly associated with rifampin resistance may also impact susceptibility to other last-line antibiotics inS. aureus; however, the overall frequency and clinical impact of these mutations are unknown. By mining a global collection of clinicalS. aureusgenomes and by mutagenesis experiments, this work reveals that common rifampin-inducedrpoBmutations promote phenotypic plasticity that has led to the global emergence of stable, multidrug-resistantS. aureuslineages that are associated with increased risk of therapeutic failure through coresistance to other last-line antimicrobials. We recommend decreasing susceptibility breakpoints for rifampin to allow phenotypic detection of criticalrpoBmutations conferring low resistance to rifampin and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these deleterious mutations globally.


September 22, 2019  |  

In situ analyses directly in diarrheal stool reveal large variations in bacterial load and active toxin expression of enterotoxigenic Escherichia coli and Vibrio cholerae.

The bacterial pathogens enterotoxigenicEscherichia coli(ETEC) andVibrio choleraeare major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), whileV. choleraeproduces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102and 108bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102to 104of either ETEC orV. choleraetoxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCEThe cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenicE. coli(ETEC) andVibrio choleraedirectly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.


September 22, 2019  |  

The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”, (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen.

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment.

Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli.

Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn’s disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.


September 22, 2019  |  

Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study.

Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium.In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the disc diffusion method, and isolates shown to be resistant to ampicillin underwent resistance-transfer experiments. To provide insights into population structure and mechanisms of ampicillin resistance, we did whole-genome sequencing on a subset of 225 isolates, selected to maximise source, spatiotemporal, and genetic diversity.11 (4%) of 288 isolates were resistant to ampicillin because of acquisition of various ß lactamase genes, including blaTEM-1, carried by various plasmids, including the virulence plasmid of S enterica serotype Typhimurium. These 11 isolates were from three phylogenomic groups. One isolate producing TEM-1 ß lactamase was isolated in France in 1959 and two isolates producing TEM-1 ß lactamase were isolated in Tunisia in 1960, before ampicillin went on sale. The vectors for ampicillin resistance were different from those reported in the strains responsible for the outbreaks in the UK in the 1960s.The association between antibiotic use and selection of resistance determinants is not as direct as often presumed. Our results suggest that the non-clinical use of narrow-spectrum penicillins (eg, benzylpenicillin) might have favoured the diffusion of plasmids carrying the blaTEM-1gene in S enterica serotype Typhimurium in the late 1950s.Institut Pasteur, Santé publique France, the French Government’s Investissement d’Avenir programme, the Fondation Le Roch-Les Mousquetaires. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus.

During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by ß-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne ß-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of ß-lactams as a main therapeutic application against staphylococcal infections.


September 22, 2019  |  

Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.


September 22, 2019  |  

Genetic separation of Listeria monocytogenes causing central nervous system infections in animals.

Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined “non-clinical” group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains.


September 22, 2019  |  

Multidrug-resistant Escherichia albertii: Co-occurrence of ß-lactamase and MCR-1 encoding genes.

Escherichia albertii is an emerging member of the Enterobacteriaceae causing human and animal enteric infections. Antimicrobial resistance among enteropathogens has been reported to be increasing in the past years. The purpose of this study was to investigate antibiotic resistance and resistance genes in E. albertii isolated from Zigong city, Sichuan province, China. The susceptibility to 21 antimicrobial agents was determined by Kirby-Bauer disk diffusion method. The highest prevalence was tetracycline resistance with a rate of 62.7%, followed by resistance to nalidixic acid and streptomycin with a rate of 56.9 and 51.0%, respectively. All isolates were sensitive or intermediate susceptible to imipenem, meropenem, amoxicillin-clavulanic acid, and levofloxacin. Among 51 E. albertii isolates, 15 were extended-spectrum ß-lactamase-producing as confirmed by the double disk test. The main ß-lactamase gene groups, i.e., blaTEM, blaSHV, and blaCTX-M, were detected in17, 20, and 22 isolates, respectively. Furthermore, four colistin-resistant isolates with minimum inhibitory concentrations of 8 mg/L were identified. The colistin-resistant isolates all harbored mcr-1 and blaCTX-M-55. Genome sequencing showed that E. albertii strain SP140150 carried mcr-1 and blaCTX-M-55 in two different plasmids. This study provided significant information regarding antibiotic resistance profiles and identified the co-occurrence of ß-lactamase and MCR-1 encoding genes in E. albertii isolates.


September 22, 2019  |  

Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins.

Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum ß-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan. The XDR S. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S. Typhi observed here adds urgency to the need for typhoid prevention measures.


September 22, 2019  |  

Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides.

The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.


September 22, 2019  |  

N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori.

Many bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.HpyAII which recognizes 5′ TCTTC 3′ sequence and methylates the first cytosine residue. To understand the role of m4C modification, M2.hpyAII deletion strain was constructed. Deletion strain displayed lower adherence to host AGS cells and reduced potential to induce inflammation and apoptosis. M2.hpyAII gene deletion strain exhibited reduced capacity for natural transformation, which was rescued in the complemented strain carrying an active copy of M2.hpyAII gene in the genome. Genome-wide gene expression and proteomic analysis were carried out to discern the possible reasons behind the altered phenotype of the M2.hpyAII gene deletion strain. Upon the loss of m4C modification a total of 102 genes belonging to virulence, ribosome assembly and cellular components were differentially expressed. The present study adds a functional role for the presence of m4C modification in H. pylori and provides the first evidence that m4C signal acts as a global epigenetic regulator in H. pylori.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.