Menu
October 23, 2019  |  

Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3′-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.


October 23, 2019  |  

Identification and expression analysis of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax

The citrus fruit fly Bactrocera (Tetradacus) minax is a major and devastating agricultural pest in Asian subtropical countries. Previous studies have shown that B. minax interacts with hosts via an efficient chemosensory system. However, knowledge regarding the molecular components of the B. minax chemosensory system has not yet been well established. Herein, based on our newly generated whole-genome dataset for B. minax and by comparison with the characterized genomes of 6 other fruit fly species, we identified, for the first time, a total of 25 putative odorant-binding receptors (OBPs), 4 single-copy chemosensory proteins (CSPs) and 53 candidate odorant receptors (ORs). To further survey the expression of these candidate genes, the transcriptomes from three developmental stages (larvae, pupae and adults) of B. minax and Bactrocera dorsalis were analyzed. We found that 1) at the adult developmental stage, there were 14 highly expressed OBPs (FPKM>100) in B. dorsalis and 7 highly expressed OBPs in B. minax; 2) the expression of CSP3 and CSP4 in adult B. dorsalis was higher than that in B. minax; and 3) most of the OR genes exhibited low expression at the three developmental stages in both species. This study on the identification of the chemosensory system of B. minax not only enriches the existing research on insect olfactory receptors but also provides new targets for preventative control and ecological regulation of B. minax in the future.


October 23, 2019  |  

An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage.

Although engineered nucleases can efficiently cleave intracellular DNA at desired target sites, major concerns remain on potential ‘off-target’ cleavage that may occur throughout the genome. We developed an online tool: predicted report of genome-wide nuclease off-target sites (PROGNOS) that effectively identifies off-target sites. The initial bioinformatics algorithms in PROGNOS were validated by predicting 44 of 65 previously confirmed off-target sites, and by uncovering a new off-target site for the extensively studied zinc finger nucleases (ZFNs) targeting C-C chemokine receptor type 5. Using PROGNOS, we rapidly interrogated 128 potential off-target sites for newly designed transcription activator-like effector nucleases containing either Asn-Asn (NN) or Asn-Lys (NK) repeat variable di-residues (RVDs) and 3- and 4-finger ZFNs, and validated 13 bona fide off-target sites for these nucleases by DNA sequencing. The PROGNOS algorithms were further refined by incorporating additional features of nuclease-DNA interactions and the newly confirmed off-target sites into the training set, which increased the percentage of bona fide off-target sites found within the top PROGNOS rankings. By identifying potential off-target sites in silico, PROGNOS allows the selection of more specific target sites and aids the identification of bona fide off-target sites, significantly facilitating the design of engineered nucleases for genome editing applications.


October 23, 2019  |  

Function-based identification of mammalian enhancers using site-specific integration.

The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe site-specific integration fluorescence-activated cell sorting followed by sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Targeted single-copy genomic integration into pluripotent cells, reporter assays and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. By functionally interrogating >500 kilobases (kb) of mouse and human sequence in mouse embryonic stem cells for enhancer activity we identified enhancers at pluripotency loci including NANOG. In in vitro-differentiated cardiomyocytes and neural progenitor cells, we identified cardiac enhancers and neuronal enhancers, respectively. SIF-seq is a powerful and flexible method for de novo functional identification of mammalian enhancers in a potentially wide variety of cell types.


October 23, 2019  |  

Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing.

Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats.Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


October 23, 2019  |  

Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease.

Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic ‘safe harbor’ site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus(+) HSPCs with 6-16% human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 resulted in ~15% gp91phox expression and increased NADPH oxidase activity in ex vivo-derived neutrophils. In mice transplanted with corrected HSPCs, 4-11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases.


October 23, 2019  |  

Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.

The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


October 23, 2019  |  

Adeno-associated virus genome population sequencing achieves full vector genome resolution and reveals human-vector chimeras

Recombinant adeno-associated virus (rAAV)-based gene therapy has entered a phase of clinical translation and commercialization. Despite this progress, vector integrity following production is often overlooked. Compromised vectors may negatively impact therapeutic efficacy and safety. Using single molecule, real-time (SMRT) sequencing, we can comprehensively profile packaged genomes as a single intact molecule and directly assess vector integrity without extensive preparation. We have exploited this methodology to profile all heterogeneic populations of self-complementary AAV genomes via bioinformatics pipelines and have coined this approach AAV-genome population sequencing (AAV-GPseq). The approach can reveal the relative distribution of truncated genomes versus full-length genomes in vector preparations. Preparations that seemingly show high genome homogeneity by gel electrophoresis are revealed to consist of less than 50% full-length species. With AAV-GPseq, we can also detect many reverse-packaged genomes that encompass sequences originating from plasmid backbone, as well as sequences from packaging and helper plasmids. Finally, we detect host-cell genomic sequences that are chimeric with inverted terminal repeat (ITR)-containing vector sequences. We show that vector populations can contain between 1.3% and 2.3% of this type of undesirable genome. These discoveries redefine quality control standards for viral vector preparations and highlight the degree of foreign products in rAAV-based therapeutic vectors.


October 23, 2019  |  

Chromosomal-level assembly of yellow catfish genome using third-generation DNA sequencing and Hi-C analysis.

The yellow catfish, Pelteobagrus fulvidraco, belonging to the Siluriformes order, is an economically important freshwater aquaculture fish species in Asia, especially in Southern China. The aquaculture industry has recently been facing tremendous challenges in germplasm degeneration and poor disease resistance. As the yellow catfish exhibits notable sex dimorphism in growth, with adult males about two- to three-fold bigger than females, the way in which the aquaculture industry takes advantage of such sex dimorphism is another challenge. To address these issues, a high-quality reference genome of the yellow catfish would be a very useful resource.To construct a high-quality reference genome for the yellow catfish, we generated 51.2 Gb short reads and 38.9 Gb long reads using Illumina and Pacific Biosciences (PacBio) sequencing platforms, respectively. The sequencing data were assembled into a 732.8 Mb genome assembly with a contig N50 length of 1.1 Mb. Additionally, we applied Hi-C technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with 26 chromosomes and a scaffold N50 length of 25.8 Mb. Using 24,552 protein-coding genes annotated in the yellow catfish genome, the phylogenetic relationships of the yellow catfish with other teleosts showed that yellow catfish separated from the common ancestor of channel catfish ~81.9 million years ago. We identified 1,717 gene families to be expanded in the yellow catfish, and those gene families are mainly enriched in the immune system, signal transduction, glycosphingolipid biosynthesis, and fatty acid biosynthesis.Taking advantage of Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level genome assembly for the yellow catfish P. fulvidraco. The genomic resources generated in this work not only offer a valuable reference genome for functional genomics studies of yellow catfish to decipher the economic traits and sex determination but also provide important chromosome information for genome comparisons in the wider evolutionary research community.


September 22, 2019  |  

Acidipropionibacterium virtanenii sp. nov., isolated from malted barley.

A Gram-stain-positive, catalase-positive and pleomorphic rod organism was isolated from malted barley in Finland, classified initially by partial 16S rRNA gene sequencing and originally deposited in the VTT Culture Collection as a strain of Propionibacterium acidipropionici (currently Acidipropionibacterium acidipropionici). The subsequent comparison of the whole 16S rRNA gene with other representatives of the genus Acidipropionibacterium revealed that the strain belongs to a novel species, most closely related to Acidipropionibacterium microaerophilum and Acidipropionibacterium acidipropionici, with similarity values of 98.46 and 98.31?%, respectively. The whole genome sequencing using PacBio RS II platform allowed further comparison of the genome with all of the other DNA sequences available for the type strains of the Acidipropionibacterium species. Those comparisons revealed the highest similarity of strain JS278T to A. acidipropionici, which was confirmed by the average nucleotide identity analysis. The genome of strain JS278T is intermediate in size compared to the A. acidipropionici and Acidipropionibacterium jensenii at 3?432?872?bp, the G+C?content is 68.4?mol%. The strain fermented a wide range of carbon sources, and produced propionic acid as the major fermentation product. Besides its poor ability to grow at 37?°C and positive catalase reaction, the observed phenotype was almost indistinguishable from those of A. acidipropionici and A. jensenii. Based on our findings, we conclude that the organism represents a novel member of the genus Acidipropionibacterium, for which we propose the name Acidipropionibacteriumvirtanenii sp. nov. The type strain is JS278T (=VTT E-113202T=DSM 106790T).


September 22, 2019  |  

A chromosome conformation capture ordered sequence of the barley genome.

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


September 22, 2019  |  

Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies.

Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.


September 22, 2019  |  

TACO produces robust multisample transcriptome assemblies from RNA-seq.

Accurate transcript structure and abundance inference from RNA sequencing (RNA-seq) data is foundational for molecular discovery. Here we present TACO, a computational method to reconstruct a consensus transcriptome from multiple RNA-seq data sets. TACO employs novel change-point detection to demarcate transcript start and end sites, leading to improved reconstruction accuracy compared with other tools in its class. The tool is available at http://tacorna.github.io and can be readily incorporated into RNA-seq analysis workflows.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.