June 1, 2021  |  

Using whole exome sequencing and bacterial pathogen sequencing to investigate the genetic basis of pulmonary non-tuberculous mycobacterial infections.

Pulmonary non-tuberculous mycobacterial (PNTM) infections occur in patients with chronic lung disease, but also in a distinct group of elderly women without lung defects who share a common body morphology: tall and lean with scoliosis, pectus excavatum, and mitral valve prolapse. In order to characterize the human host susceptibility to PNTM, we performed whole exome sequencing (WES) of 44 individuals in extended families of patients with active PNTM as well as 55 additional unrelated individuals with PNTM. This unique collection of familial cohorts in PNTM represents an important opportunity for a high yield search for genes that regulate mucosal immunity. An average of 58 million 100bp paired-end Illumina reads per exome were generated and mapped to the hg19 reference genome. Following variant detection and classification, we identified 58,422 potentially high-impact SNPs, 97.3% of which were missense mutations. Segregating variants using the family pedigrees as well as comparisons to the unrelated individuals identified multiple potential variants associated with PNTM. Validations of these candidate variants in a larger PNTM cohort are underway. In addition to WES, we sequenced the genomes of 52 mycobacterial isolates, including 9 from these PNTM patients, to integrate host PNTM susceptibility with mycobacterial genotypes and gain insights into the key factors involved in this devastating disease. These genomes were sequenced using a combination of 454, Illumina, and PacBio platforms and assembled using multiple genome assemblers. The resulting genome sequences were used to identify mycobacterial genotypes associated with virulence, invasion, and drug resistance.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Chromosomal-level assembly of the blolsod clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C.

The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae.A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated.We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Remedial Treatment of Corroded Iron Objects by Environmental Aeromonas Isolates.

Using bacteria to transform reactive corrosion products into stable compounds represents an alternative to traditional methods employed in iron conservation. Two environmental Aeromonas strains (CA23 and CU5) were used to transform ferric iron corrosion products (goethite and lepidocrocite) into stable ferrous iron-bearing minerals (vivianite and siderite). A genomic and transcriptomic approach was used to analyze the metabolic traits of these strains and to evaluate their pathogenic potential. Although genes involved in solid-phase iron reduction were identified, key genes present in other environmental iron-reducing species are missing from the genome of CU5. Several pathogenicity factors were identified in the genomes of both strains, but none of these was expressed under iron reduction conditions. Additional in vivo tests showed hemolytic and cytotoxic activities for strain CA23 but not for strain CU5. Both strains were easily inactivated using ethanol and heat. Nonetheless, given a lesser potential for a pathogenic lifestyle, CU5 is the most promising candidate for the development of a bio-based iron conservation method stabilizing iron corrosion. Based on all the results, a prototype treatment was established using archaeological items. On those, the conversion of reactive corrosion products and the formation of a homogenous layer of biogenic iron minerals were achieved. This study shows how naturally occurring microorganisms and their metabolic capabilities can be used to develop bio-inspired solutions to the problem of metal corrosion.IMPORTANCE Microbiology can greatly help in the quest for a sustainable solution to the problem of iron corrosion, which causes important economic losses in a wide range of fields, including the protection of cultural heritage and building materials. Using bacteria to transform reactive and unstable corrosion products into more-stable compounds represents a promising approach. The overall aim of this study was to develop a method for the conservation and restoration of corroded iron items, starting from the isolation of iron-reducing bacteria from natural environments. This resulted in the identification of a suitable candidate (Aeromonas sp. strain CU5) that mediates the formation of desirable minerals at the surfaces of the objects. This led to the proof of concept of an application method on real objects.Copyright © 2019 Kooli et al.


April 21, 2020  |  

Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae.

Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes.


April 21, 2020  |  

Highly flexible infection programs in a specialized wheat pathogen.

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.


April 21, 2020  |  

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.


April 21, 2020  |  

Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus.

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.


April 21, 2020  |  

Transcriptome analysis reveals multiple signal network contributing to the Verticillium wilt resistance in eggplant

Verticillium wilt is a devastating disease in eggplants. In order to understand the molecular mechanism of disease resistance in eggplants, transcriptomes of Verticillium wilt infected eggplants were detected. A total of 480, 518, 887 and 1 046 Verticillium wilt related differentially expressed genes were identified at 6 (V6), 12 (V12), 24 (V24) and 48?h (V48), respectively. COG function classification revealed that most of DEGs functioned in “Amino acid transport and metabolism”, “Cytoskeleton” and “Cell motility”. In addition, compared the control plants (V0) to infected eggplants (V6-V48), a total of 111 common DEGs were identified. Except for “General function prediction only”, most of the DEGs enriched in “Signal transduction”. DEGs associated to different hormone signals, including GID1B, ROPGAP1, OPT3 and CDPK, were identified throughout the whole infection process. Cross-talk among defense signal pathways plays major roles in the Verticillium wilt disease resistance in eggplants.


April 21, 2020  |  

The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.

Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated at specific sites or motifs. The methylation types included 6mA, 4mC, and unknown types. Comparative genomic analysis demonstrated low levels of genetic similarity between E. harbinense and other well-known hydrogen-producing bacteria (i.e., Clostridium and Thermoanaerobacter) in phylogenesis. Hydrogen production of E. harbinense was catalyzed by genes that encode [FeFe]-hydrogenases and that were synthesized by three maturases of [FeFe]-H2ase. The metabolic mechanism of H2-ethanol co-production fermentation, catalyzed by pyruvate ferredoxin oxidoreductase was proposed. This study provides genetic and evolutionary information of a model genus for the further investigation of the metabolic pathway and regulatory network of ethanol-type fermentation and anaerobic bioprocesses for waste or wastewater treatment.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


April 21, 2020  |  

Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex.

The Mycobacterium tuberculosis complex (MTBC) members display different host-specificities and virulence phenotypes. Here, we have performed a comprehensive RNAseq and methylome analysis of the main clades of the MTBC and discovered unique transcriptional profiles. The majority of genes differentially expressed between the clades encode proteins involved in host interaction and metabolic functions. A significant fraction of changes in gene expression can be explained by positive selection on single mutations that either create or disrupt transcriptional start sites (TSS). Furthermore, we show that clinical strains have different methyltransferases inactivated and thus different methylation patterns. Under the tested conditions, differential methylation has a minor direct role on transcriptomic differences between strains. However, disruption of a methyltransferase in one clinical strain revealed important expression differences suggesting indirect mechanisms of expression regulation. Our study demonstrates that variation in transcriptional profiles are mainly due to TSS mutations and have likely evolved due to differences in host characteristics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.