Menu
September 22, 2019  |  

Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks.

Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species.The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level.In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level.We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.


September 22, 2019  |  

Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola.

Social bees collect carbohydrate-rich food to support their colonies, and yet, certain carbohydrates present in their diet or produced through the breakdown of pollen are toxic to bees. The gut microbiota of social bees is dominated by a few core bacterial species, including the Gram-negative species Gilliamella apicola We isolated 42 strains of G. apicola from guts of honey bees and bumble bees and sequenced their genomes. All of the G. apicola strains share high 16S rRNA gene similarity, but they vary extensively in gene repertoires related to carbohydrate metabolism. Predicted abilities to utilize different sugars were verified experimentally. Some strains can utilize mannose, arabinose, xylose, or rhamnose (monosaccharides that can cause toxicity in bees) as their sole carbon and energy source. All of the G. apicola strains possess a manO-associated mannose family phosphotransferase system; phylogenetic analyses suggest that this was acquired from Firmicutes through horizontal gene transfer. The metabolism of mannose is specifically dependent on the presence of mannose-6-phosphate isomerase (MPI). Neither growth rates nor the utilization of glucose and fructose are affected in the presence of mannose when the gene encoding MPI is absent from the genome, suggesting that mannose is not taken up by G. apicola strains which harbor the phosphotransferase system but do not encode the MPI. Given their ability to simultaneously utilize glucose, fructose, and mannose, as well as the ability of many strains to break down other potentially toxic carbohydrates, G. apicola bacteria may have key roles in improving dietary tolerances and maintaining the health of their bee hosts.Bees are important pollinators of agricultural plants. Our study documents the ability of Gilliamella apicola, a dominant gut bacterium in honey bees and bumble bees, to utilize several sugars that are harmful to bee hosts. Using genome sequencing and growth assays, we found that the ability to metabolize certain toxic carbohydrates is directly correlated with the presence of their respective degradation pathways, indicating that metabolic potential can be accurately predicted from genomic data in these gut symbionts. Strains vary considerably in their range of utilizable carbohydrates, which likely reflects historical horizontal gene transfer and gene deletion events. Unlike their bee hosts, G. apicola bacteria are not detrimentally affected by growth on mannose-containing medium, even in strains that cannot metabolize this sugar. These results suggest that G. apicola may be an important player in modulating nutrition in the bee gut, with ultimate effects on host health. Copyright © 2016 Zheng et al.


September 22, 2019  |  

The state of play in higher eukaryote gene annotation.

A genome sequence is worthless if it cannot be deciphered; therefore, efforts to describe – or ‘annotate’ – genes began as soon as DNA sequences became available. Whereas early work focused on individual protein-coding genes, the modern genomic ocean is a complex maelstrom of alternative splicing, non-coding transcription and pseudogenes. Scientists – from clinicians to evolutionary biologists – need to navigate these waters, and this has led to the design of high-throughput, computationally driven annotation projects. The catalogues that are being produced are key resources for genome exploration, especially as they become integrated with expression, epigenomic and variation data sets. Their creation, however, remains challenging.


September 22, 2019  |  

The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.

We have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea. The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere. When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of lacs2.3 results from endogenous mechanisms. The phyllosphere microbiome showed distinct populations in WT plants compared to cuticle mutants. One species identified as Pseudomonas sp isolated from the microbiome of bdg provided resistance to B. cinerea on Arabidopsis thaliana as well as on apple fruits. No direct activity was observed against B. cinerea and the action of the bacterium required the plant. Thus, microbes present on the plant surface contribute to the resistance to B. cinerea. These results open new perspectives on the function of the leaf microbiome in the protection of plants.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


September 22, 2019  |  

Genomics and host specialization of honey bee and bumble bee gut symbionts.

Gilliamella apicola and Snodgrassella alvi are dominant members of the honey bee (Apis spp.) and bumble bee (Bombus spp.) gut microbiota. We generated complete genomes of the type strains G. apicola wkB1(T) and S. alvi wkB2(T) (isolated from Apis), as well as draft genomes for four other strains from Bombus. G. apicola and S. alvi were found to occupy very different metabolic niches: The former is a saccharolytic fermenter, whereas the latter is an oxidizer of carboxylic acids. Together, they may form a syntrophic network for partitioning of metabolic resources. Both species possessed numerous genes [type 6 secretion systems, repeats in toxin (RTX) toxins, RHS proteins, adhesins, and type IV pili] that likely mediate cell-cell interactions and gut colonization. Variation in these genes could account for the host fidelity of strains observed in previous phylogenetic studies. Here, we also show the first experimental evidence, to our knowledge, for this specificity in vivo: Strains of S. alvi were able to colonize their native bee host but not bees of another genus. Consistent with specific, long-term host association, comparative genomic analysis revealed a deep divergence and little or no gene flow between Apis and Bombus gut symbionts. However, within a host type (Apis or Bombus), we detected signs of horizontal gene transfer between G. apicola and S. alvi, demonstrating the importance of the broader gut community in shaping the evolution of any one member. Our results show that host specificity is likely driven by multiple factors, including direct host-microbe interactions, microbe-microbe interactions, and social transmission.


September 22, 2019  |  

RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg.

Chronic hepatitis B virus (HBV) infection is a major health concern worldwide, frequently leading to liver cirrhosis, liver failure, and hepatocellular carcinoma. Evidence suggests that high viral antigen load may play a role in chronicity. Production of viral proteins is thought to depend on transcription of viral covalently closed circular DNA (cccDNA). In a human clinical trial with an RNA interference (RNAi)-based therapeutic targeting HBV transcripts, ARC-520, HBV S antigen (HBsAg) was strongly reduced in treatment-naïve patients positive for HBV e antigen (HBeAg) but was reduced significantly less in patients who were HBeAg-negative or had received long-term therapy with nucleos(t)ide viral replication inhibitors (NUCs). HBeAg positivity is associated with greater disease risk that may be moderately reduced upon HBeAg loss. The molecular basis for this unexpected differential response was investigated in chimpanzees chronically infected with HBV. Several lines of evidence demonstrated that HBsAg was expressed not only from the episomal cccDNA minichromosome but also from transcripts arising from HBV DNA integrated into the host genome, which was the dominant source in HBeAg-negative chimpanzees. Many of the integrants detected in chimpanzees lacked target sites for the small interfering RNAs in ARC-520, explaining the reduced response in HBeAg-negative chimpanzees and, by extension, in HBeAg-negative patients. Our results uncover a heretofore underrecognized source of HBsAg that may represent a strategy adopted by HBV to maintain chronicity in the presence of host immunosurveillance. These results could alter trial design and endpoint expectations of new therapies for chronic HBV. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019  |  

Divergent brain gene expression profiles between alternative behavioural helper types in a cooperative breeder.

Juveniles of the cooperatively breeding cichlid fish Neolamprologus pulcher either consistently provide help in form of alloparental egg care (“cleaners”) or consistently abstain from helping (“noncleaners”). These phenotypes are not based on heritable genetic differences. Instead, they arise during ontogeny, which should lead to differences in brain structure or physiology, a currently untested prediction. We compared brain gene expression profiles of cleaners and noncleaners in two experimental conditions, a helping opportunity and a control condition. We aimed to identify (a) expression differences between cleaners and noncleaners in the control, (b) changes in gene expression induced by the opportunity and (c) differences in plasticity of gene expression between cleaners and noncleaners. Control cleaners and noncleaners differed in the expression of a single gene, irx2, which regulates neural differentiation. During the opportunity, cleaners and noncleaners had three upregulated genes in common, which were implicated in neuroplasticity, hormonal signalling and cell proliferation. Thus, the stimulus in the opportunity was sufficiently salient. Cleaners also showed higher expression of seven additional genes that were unique to the opportunity. One of these cleaner-specific genes is implicated in neuropeptide metabolism, indicating that this process is associated with cleaning performance. This suggests that the two types employed different pathways to integrate social information, preparing them for accelerated reaction to future opportunities. Interestingly, three developmental genes were downregulated between the control and the opportunity in cleaners only. Our results indicate that the two behavioural types responded differently to the helping opportunity and that only cleaners responded by downregulating developmental genes.© 2018 John Wiley & Sons Ltd.


September 22, 2019  |  

The genomic and functional landscapes of developmental plasticity in the American cockroach.

Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.


September 22, 2019  |  

Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.

Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.


September 22, 2019  |  

A new standard for crustacean genomes: The highly contiguous, annotated genome assembly of the clam shrimp Eulimnadia texana reveals HOX gene order and identifies the sex chromosome.

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120?Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6?Mb. The assembly contains 98% of transcripts predicted via RNAseq. This assembly is qualitatively different from scaffolded Illumina assemblies: It is produced from long reads that contain sequence data along their entire length, and is thus gap free. The contiguity of the assembly allows us to order the HOX genes within the genome, identifying two loci that contain HOX gene orthologs, and which approximately maintain the order observed in other arthropods. We identified a partial duplication of the Antennapedia complex adjacent to the few genes homologous to the Bithorax locus. Because the sex chromosome of an androdioecious species is of special interest, we used existing allozyme and microsatellite markers to identify the E. texana sex chromosome, and find that it comprises nearly half of the genome of this species. Linkage patterns indicate that recombination is extremely rare and perhaps absent in hermaphrodites, and as a result the location of the sex determining locus will be difficult to refine using recombination mapping.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees.

Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.


September 22, 2019  |  

The draft genome assembly of Dermatophagoides pteronyssinus supports identification of novel allergen isoforms in Dermatophagoides species.

Background: Dermatophagoides pteronyssinus (DP) and Dermatophagoides farinae (DF) are highly similar disease-asso- ciated mites with frequently overlapping geographic distributions. A draft genome of DP was assembled to identify the candidate allergens in DP that are homologous to those in DF, investigate allergen isoforms, and facilitate comparisons with related Acari. Methods: PacBio and Illumina whole-genome sequencing was performed on DP. Assembly and reconstruction of the genomes were optimized for isoform identification in a heterogeneous population. Bioinformatic analyses of Acari genomes were performed. Results: The predicted size of the DP nuclear genome is 52.5 Mb. A predicted set of 19,368 proteins was identified, including all 19 currently recognized allergens from this species. Orthologs for 12 allergens established for DF were found. The population of DP mites showed a high level of heterozygosity that allowed the identification of 43 new isoforms for both established and candidate allergens in DP including a new isoform for the major allergen Der p 23. Reanalyzing the previous DF data assuming heterozygosity, 14 new allergen isoforms could be identified. Some new isoforms were observed in both species, suggesting that these isoforms predated speciation. The high quality of both genomes allowed an examination of synteny which showed that many allergen orthologs are physically clustered but with species-specific exon/intron structures. Comparative genomic analyses of other Acariformes mites showed that most of the allergen homologs are widely conserved within this Superorder. Conclusions: Candidate allergens in DP were identified to facilitate future serological studies. While DP and DF are highly similar genetically, species-specific allergen isoforms exist to facilitate molecular differentiation.


September 22, 2019  |  

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. TheT. nigenome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo.© 2018, Fu et al.


September 22, 2019  |  

A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.

Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models.A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models.Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.