X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Zheng, Hao and Nishida, Alex and Kwong, Waldan K and Koch, Hauke and Engel, Philipp and Steele, Margaret I and Moran, Nancy A

Social bees collect carbohydrate-rich food to support their colonies, and yet, certain carbohydrates present in their diet or produced through the breakdown of pollen are toxic to bees. The gut microbiota of social bees is dominated by a few core bacterial species, including the Gram-negative species Gilliamella apicola We isolated 42 strains of G. apicola from guts of honey bees and bumble bees and sequenced their genomes. All of the G. apicola strains share high 16S rRNA gene similarity, but they vary extensively in gene repertoires related to carbohydrate metabolism. Predicted abilities to utilize different sugars were verified experimentally. Some strains can utilize mannose, arabinose, xylose, or rhamnose (monosaccharides that can cause toxicity in bees) as their sole carbon and energy source. All of the G. apicola strains possess a manO-associated mannose family phosphotransferase system; phylogenetic analyses suggest that this was acquired from Firmicutes through horizontal gene transfer. The metabolism of mannose is specifically dependent on the presence of mannose-6-phosphate isomerase (MPI). Neither growth rates nor the utilization of glucose and fructose are affected in the presence of mannose when the gene encoding MPI is absent from the genome, suggesting that mannose is not taken up by G. apicola strains which harbor the phosphotransferase system but do not encode the MPI. Given their ability to simultaneously utilize glucose, fructose, and mannose, as well as the ability of many strains to break down other potentially toxic carbohydrates, G. apicola bacteria may have key roles in improving dietary tolerances and maintaining the health of their bee hosts.Bees are important pollinators of agricultural plants. Our study documents the ability of Gilliamella apicola, a dominant gut bacterium in honey bees and bumble bees, to utilize several sugars that are harmful to bee hosts. Using genome sequencing and growth assays, we found that the ability to metabolize certain toxic carbohydrates is directly correlated with the presence of their respective degradation pathways, indicating that metabolic potential can be accurately predicted from genomic data in these gut symbionts. Strains vary considerably in their range of utilizable carbohydrates, which likely reflects historical horizontal gene transfer and gene deletion events. Unlike their bee hosts, G. apicola bacteria are not detrimentally affected by growth on mannose-containing medium, even in strains that cannot metabolize this sugar. These results suggest that G. apicola may be an important player in modulating nutrition in the bee gut, with ultimate effects on host health. Copyright © 2016 Zheng et al.

Journal: mBio
DOI: 10.1128/mBio.01326-16
Year: 2016

Read Publication

 

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »