June 1, 2021  |  

Sequencing of expanded CGG repeats in the FMR1 gene.

Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent development of single molecule, real-time sequencing represents a novel approach to DNA sequencing that couples the intrinsic processivity of DNA polymerase with the ability to read polymerase activity on a single-molecule basis. Further, the accuracy of the method is improved through the use of circular templates, such that each molecule can be read multiple times to produce a circular consensus sequence (CCS). We have succeeded in generating CCS reads representing multiple passes through both strands of repeat tracts exceeding 700 CGGs (>2 kb of 100 percent CG) flanked by native FMR1 sequence, with single-molecule readlengths exceeding 12 kb. This sequencing approach thus enables us to fully characterize the previously intractable CGG-repeat sequence, leading to a better understanding of the distinct associated molecular pathologies. Real-time kinetic data also provides insight into the activity of DNA polymerase inside this unique sequence. The methodology should be widely applicable for studies of the molecular pathogenesis of an increasing number of repeat expansion-associated neurodegenerative and neurodevelopmental disorders, and for the efficient identification of such disorders in the clinical setting.


June 1, 2021  |  

Evaluating the potential of new sequencing technologies for genotyping and variation discovery in human data.

A first look at Pacific Biosciences RS data Pacific Biosciences technology provides a fundamentally new data type that provides the potential to overcome these limitations by providing significantly longer reads (now averaging >1kb), enabling more unique seeds for reference alignment. In addition, the lack of amplification in the library construction step avoids a common source of base composition bias. With these potential advantages in mind, we here evaluate the utility of the Pacific Biosciences RS platform for human medical resequencing projects by assessing the quality of the raw sequencing data, as well as its use for SNP discovery and genotyping using the Genome Analysis Toolkit (GATK).


June 1, 2021  |  

SMRT Sequencing of whole mitochondrial genomes and its utility in association studies of metabolic disease.

In this study we demonstrate the utility of Single-Molecule Real Time SMRT sequencing to detect variants and to recapitulate whole mitochondrial genomes in an association study of Metabolic syndrome using samples from a well-studied cohort from Micronesia. The Micronesian island of Kosrae is a rare genetic isolate that offers significant advantages for genetic studies of human disease. Kosrae suffers from one of the highest rates of MetS (41%), obesity (52%), and diabetes (17%) globally and has a homogeneous environment making this an excellent population in which to study these significant health problems. We are conducting family-based association analyses aimed at identifying specific mitochondrial variants that contribute to obesity and other co-morbid conditions. We sequenced whole mitochondrial genomes from 10 Kosraen individuals who represent greater than 25 % of the mitochondrial genetic diversity for the entire Kosraen population. Using Pacific Biosciences C2 chemistry, SMRTbell libraries were constructed from pooled, full-length, unsheared 5 kb PCR amplicons, tiling the entire 16.6 kb mtDNA genome. Average read lengths for each sample were between 2500-3000 bp, with 5% of reads between 6,000-8,000 bases, depending on movie lengths. The data generated in this study serve as proof of principle that SMRT Sequencing data can be utilized for identification of high-quality variants and complete mitochondrial genome sequences. These data will be leveraged to identify causative variants for Metabolic syndrome and associated disorders.


June 1, 2021  |  

Single Molecule Real-Time (SMRT) Sequencing of genes implicated in autosomal recessive diseases.

In today’s clinical diagnostic laboratories, the detection of the disease causing mutations is either done through genotyping or Sanger sequencing. Whether done singly or in a multiplex assay, genotyping works only if the exact molecular change is known. Sanger sequencing is the gold standard method that captures both known and novel molecular changes in the disease gene of interest. Most clinical Sanger sequencing assays involve PCR-amplifying the coding sequences of the disease target gene followed by bi-directional sequencing of the amplified products. Therefore for every patient sample, one generates multiple amplicons singly and each amplicon leads to two separate sequencing reactions. Single Molecule, Real-Time (SMRT) sequencing offers several advantages to Sanger sequencing including long read lengths, first-in-first-out processing, fast time to result, high-levels of multiplexing and substantially reduced costs. For our first proof-of-concept experiment, we queried 3 known disease-associated mutations in de-identified clinical samples. We started off with 3 autosomal recessive diseases found at an increased frequency in the Ashkenazi Jewish population: Tay Sachs disease, Niemann-Pick disease and Canavan disease. The mutated gene in Tays Sachs is HEXA, Niemann-Pick is SMPD1 and Canavan is ASPA. Coding exons were amplified in multiple (6-13) amplicons for each gene from both non-carrier and carriers. Amplicons were purified, concentrations normalized, and combined prior to SMRTbell™ Library prep. A single SMRTbell library was sequenced for each gene from each patient using standard Pacific Biosciences C2 chemistry and protocols. Average read lengths of 4,000 bp across samples allowed for high-quality Circular Consensus Sequences (CCS) across all amplicons (all less than 1 kb). This high quality CCS data permitted the clean partitioning of reads from a patient in the presence of heterozygous events. Using non-carrier sequencing as a control, we were able to correctly identify the known events in carrier genes. This suggests the potential utility of SMRT sequencing in a clinical setting, enabling a cost-effective method of replacing targeted mutation detection with sequencing of the entire gene.


June 1, 2021  |  

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads are dominated by insertions and deletions. High-performance implementations of such algorithms allow more efficient de novo assembly with a pre-assembly step that generates highly accurate, consensus-based reads which can be used as input for existing genome assemblers. In contrast to recent hybrid assembly approach, only a single ~10 kb or longer SMRTbell library is necessary for the hierarchical genome assembly process (HGAP). Meanwhile, with a sensitive read-clustering algorithm with the consensus algorithms, one is able to discern haplotypes that differ by less than 1% different from each other over a large region. One of the related applications is to generate accurate haplotype sequences for HLA loci. Long sequence reads that can cover the whole 3 kb to 4 kb diploid genomic regions will simplify the haplotyping process. These algorithms can also be applied to resolve individual populations within mixed pools of DNA molecules that are similar to each, e.g., by sequencing viral quasi-species samples.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens.

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA Sequencing with short reads (SMRT CCS (circular consensus) or second-generation reads), wherein the short reads are used to error-correct the long reads which are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which SMRT sequencing reads from a single long insert library are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run, and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) for numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT Sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. With relatively short sequencing run times and automated analysis pipelines, it is possible to go from an unknown DNA sample to its complete de novo genome and epigenome in about a day.


June 1, 2021  |  

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio system.


June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape of the eukaryotic transcriptome on the PacBio RS II.

Alternative splicing of RNA is an important mechanism that increases protein diversity and is pervasive in the most complex biological functions. While advances in RNA sequencing methods have accelerated our understanding of the transcriptome, isoform discovery remains computationally challenging due to short read lengths. Here, we describe the Isoform Sequencing (Iso-Seq) method using long reads generated by the PacBio RS II. We sequenced rat heart and lung RNA using the Clontech® SMARTer® cDNA preparation kit followed by size selection using agarose gel. Additionally, we tested the BluePippin™ device from Sage Science for efficiently extracting longer transcripts = 3 kb. Post-sequencing, we developed a novel isoform-level clustering algorithm to generate high-quality transcript consensus sequences. We show that our method recovered alternative splice forms as well as alternative stop sites, antisense transcription, and retained introns. To conclude, the Iso-Seq method provides a new opportunity for researchers to study the complex eukaryotic transcriptome even in the absence of reference genomes or annotated transcripts.


June 1, 2021  |  

Allele-level sequencing and phasing of full-length HLA class I and II genes using SMRT Sequencing technology

The three classes of genes that comprise the MHC gene family are actively involved in determining donor-recipient compatibility for organ transplant, as well as susceptibility to autoimmune diseases via cross-reacting immunization. Specifically, Class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DQ and -DP are considered medically important for genetic analysis to determine histocompatibility. They are highly polymorphic and have thousands of alleles implicated in disease resistance and susceptibility. The importance of full-length HLA gene sequencing for genotyping, detection of null alleles, and phasing is now widely acknowledged. While DNA-sequencing-based HLA genotyping has become routine, only 7% of the HLA genes have been characterized by allele-level sequencing, while 93% are still defined by partial sequences. The gold-standard Sanger sequencing technology is being quickly replaced by second-generation, high- throughput sequencing methods due to its inability to generate unambiguous phased reads from heterozygous alleles. However, although these short, high-throughput, clonal sequencing methods are better at heterozygous allele detection, they are inadequate at generating full-length haploid gene sequences. Thus, full-length gene sequencing from an enhancer-promoter region to a 3’UTR that includes phasing information without the need for imputation still remains a technological challenge. The best way to overcome these challenges is to sequence these genes with a technology that is clonal in nature and has the longest possible read lengths. We have employed Single Molecule Real-Time (SMRT) sequencing technology from Pacific Biosciences for sequencing full-length HLA class I and II genes.


June 1, 2021  |  

Getting the most out of your PacBio libraries with size selection.

PacBio RS II sequencing chemistries provide read lengths beyond 20 kb with high consensus accuracy. The long read lengths of P4-C2 chemistry and demonstrated consensus accuracy of 99.999% are ideal for applications such as de novo assembly, targeted sequencing and isoform sequencing. The recently launched P5-C3 chemistry generates even longer reads with N50 often >10,000 bp, making it the best choice for scaffolding and spanning structural rearrangements. With these chemistry advances, PacBio’s read length performance is now primarily determined by the SMRTbell library itself. Size selection of a high-quality, sheared 20 kb library using the BluePippin™ System has been demonstrated to increase the N50 read length by as much as 5 kb with C3 chemistry. BluePippin size selection or a more stringent AMPure® PB selection cutoff can be used to recover long fragments from degraded genomic material. The selection of chemistries, P4-C2 versus P5-C3, is highly dependent on the final size distribution of the SMRTbell library and experimental goals. PacBio’s long read lengths also allow for the sequencing of full-length cDNA libraries at single-molecule resolution. However, longer transcripts are difficult to detect due to lower abundance, amplification bias, and preferential loading of smaller SMRTbell constructs. Without size selection, most sequenced transcripts are 1-1.5 kb. Size selection dramatically increases the number of transcripts >1.5 kb, and is essential for >3 kb transcripts.


June 1, 2021  |  

A novel analytical pipeline for de novo haplotype phasing and amplicon analysis using SMRT Sequencing technology.

While the identification of individual SNPs has been readily available for some time, the ability to accurately phase SNPs and structural variation across a haplotype has been a challenge. With individual reads of an average length of 9 kb (P5-C3), and individual reads beyond 30 kb in length, SMRT Sequencing technology allows the identification of mutation combinations such as microdeletions, insertions, and substitutions without any predetermined reference sequence. Long- amplicon analysis is a novel protocol that identifies and reports the abundance of differing clusters of sequencing reads within a single library. Graphs generated via hierarchical clustering of individual sequencing reads are used to generate Markov models representing the consensus sequence of individual clusters found to be significantly different. Long-amplicon analysis is capable of differentiating between underlying sequences that are 99.9% similar, which is suitable for haplotyping and differentiating pseudogenes from coding transcripts. This protocol allows for the identification of structural variation in the MUC5AC gene sequence, despite the presence of a gap in the current genome assembly, and can also be used for HLA haplotyping. Clustering can also been applied to identify full length transcripts for the purpose of estimating consensus sequences and enumerating isoform types. Long-amplicon analysis allows for the elucidation of complex regions otherwise missed by other sequencing technologies, which may contribute to the diagnosis and understanding of otherwise complex diseases.


June 1, 2021  |  

Long-read, single-molecule applications for protein engineering.

The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data are clustered by barcode to generate multi-molecule consensus sequences for each construct present in the pool. As a proof-of-concept dataset, we have generated a library of 384 randomly mutated variants of the Phi29 DNA polymerase, a 575 amino acid protein encoded by a 1.7 kb gene. These variants were amplified with a set of barcoded primers, and the resulting library was sequenced on a single SMRT Cell. The data produced sequences that were completely concordant with independent Sanger sequencing, for a 100% accurate reconstruction of the set of clones.


June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape in eukaryotic transcriptome on the PacBio RS II.

Advances in RNA sequencing have accelerated our understanding of the transcriptome, however isoform discovery remains challenging due to short read lengths. The Iso-Seq Application provides a new alternative to sequence full-length cDNA libraries using long reads from the PacBio RS II. Identification of long and often rare isoforms is demonstrated with rat heart and lung RNA prepared using the Clontech® SMARTer® cDNA preparation kit, followed by agarose-gel size selection in fractions of 1-2 kb, 2-3 kb and 3-6 kb. For each tissue, 1.8 and 1.2 million reads were obtained from 32 and 26 SMRT Cells, respectively. Filtering for reads with both adapters and polyA tail signals yielded >50% putative full-length transcripts. To improve consensus accuracy, we developed an isoform-level clustering algorithm ICE (Iterative Clustering for Error Correction), and polished full-length consensus sequences from ICE using Quiver. This method generated full-length transcripts up to 4.5 kb with = 99% post-correction accuracy. Compared with known rat genes, the Iso-Seq method not only recovered the majority of currently annotated isoforms, but also several unannotated novel isoforms with identified homologs in the RefSeq database. Additionally, alternative stop sites, extended UTRs, and retained introns were detected.


June 1, 2021  |  

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes across the tree of life ranging in size from 1Mbp to 3Gbp in an attempt to answer how long the reads need to be and how much coverage is necessary to completely assemble their chromosomes with single molecule sequencing. We also present a novel error correction and assembly algorithm using a combination of PacBio and pre-assembled Illumina sequencing. This new algorithm greatly outperforms other published hybrid algorithms.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.